
Capabilities, Trust, and Risk���
 ���

- random rant -	

Sophia Drossopoulou & James Noble���
WG2.16, 13 May 2013 ���

	

A very powerful program	

!  Stolen shamelessly from David Wagner, http://www.cs.berkeley.edu/~daw/talks/PLAS06.ps	

2

Capabilities	

3

Object Capabilities	

! Unforgeable capabilities	

! Possession implies Right 	

! No other access control checking 	

! Who do you trust? Who do you really trust?	

! Who are you holding on to? Who are you dreaming of?	

! Principle of Least Authority	

! No Ambient Authority	

! Capabilities + Pure Object-Orientation = Object-Capabilities	

	

4

Object Capabilities	

5

Aim���
	
Use object capabilities ���
	
 	
(and nothing but object capabilities) ���

 to support cooperation / commerce���
 between mutually untrusting parties���
���
Meta-Aim���
	
Understand how you could do this���

 Understand code that claims to do this���
���
	

6

7

Distributed Electronic Rights in JavaScript

Mark S. Miller1, Tom Van Cutsem2, and Bill Tulloh

1 Google, Inc.
2 Vrije Universiteit Brussel

Abstract. Contracts enable mutually suspicious parties to cooperate safely
through the exchange of rights. Smart contracts are programs whose behavior
enforces the terms of the contract. This paper shows how such contracts can be
specified elegantly and executed safely, given an appropriate distributed, secure,
persistent, and ubiquitous computational fabric. JavaScript provides the ubiquity
but must be significantly extended to deal with the other aspects. The first part
of this paper is a progress report on our efforts to turn JavaScript into this fabric.
To demonstrate the suitability of this design, we describe an escrow exchange
contract implemented in 42 lines of JavaScript code.

Keywords: security, distributed objects, object-capabilities, smart contracts.

1 Smart Contracts for the Rest of Us

The fabric of the global economy is held together by contracts. A contract is an agreed
framework for the rearrangement of rights between mutually suspicious parties. But
existing contracts are ambiguous, jurisdictions-specific, and written, interpreted, and
adjudicated only by expensive experts. Smart contracts are contract-like arrangements
expressed in program code, where the behavior of the program enforces the terms of
the “contract”[1]. Though not a substitute for legal contracts, they can provide some of
the benefits of contracts for fine-grain, jurisdiction-free, and automated arrangements
for which legal contracts are impractical.

To realize this potential, smart contracts need a distributed, secure, persistent, and
ubiquitous computational fabric. To avoid merely substituting one set of expensive ex-
perts for another, non-experts should be able to write smart contracts understandable
by other non-experts. We1 are working towards turning JavaScript into such a fabric.
JavaScript is already understood and used by many non-expert programmers. We call
our target JavaScript platform Dr. SES for Distributed Resilient Secure EcmaScript.2

Dr. SES is not specifically tied to electronic rights (erights) or smart contracts per
se. Its focus is to make distributed secure programming in JavaScript as effortless as
possible. But much of the design of Dr. SES and its predecessors [2,3,4] was shaped
by examining what we need to express smart contracts simply. Taking a rights-based
approach to local and distributed computing, we believe, has led us to building a better
general purpose platform as well as one naturally suited for expressing new kinds of
erights and contracts.

1 Including many collaborators over many years. See the acknowledgements.
2 The official standards name for JavaScript is “ECMAScript”.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 1–20, 2013.
c⃝ Springer-Verlag Berlin Heidelberg 2013

ESOP’13

!  Smart Contracts	

! “understandable by non-experts”	

! Real JavaScript	

! Distributed, Concurrent,	

! Generic, Symmetrical	

Distributed Electronic Rights in JavaScript 15

phase 1

phase 1
All

phase 2

Race

phase 2 cancel

cancel failOnly

failOnly

1 var transfer = (decisionP, srcPurseP, dstPurseP, amount) => {
2 var makeEscrowPurseP = Q.join(srcPurseP ! makePurse,
3 dstPurseP ! makePurse);
4 var escrowPurseP = makeEscrowPurseP ! ();

5 Q(decisionP).then(// setup phase 2
6 _ => { dstPurseP ! deposit(amount, escrowPurseP); },
7 _ => { srcPurseP ! deposit(amount, escrowPurseP); });

8 return escrowPurseP ! deposit(amount, srcPurseP); // phase 1
9 };

10 var failOnly = cancellationP => Q(cancellationP).then(
11 cancellation => { throw cancellation; });

12 var escrowExchange = (a, b) => { // a from Alice , b from Bob
13 var decide;
14 var decisionP = Q.promise(resolve => { decide = resolve; });

15 decide(Q.race([Q.all([
16 transfer(decisionP, a.moneySrcP, b.moneyDstP, b.moneyNeeded),
17 transfer(decisionP, b.stockSrcP, a.stockDstP, a.stockNeeded)
18]),
19 failOnly(a.cancellationP),
20 failOnly(b.cancellationP)]));
21 return decisionP;
22 };

Fig. 2. The Escrow Exchange Contract

Exchange Contract	

8

18 M.S. Miller, T. Van Cutsem, and B. Tulloh

1 var makeContractHost = () => {
2 var m = WeakMap();

3 return def({
4 setup: contractSrc => {
5 contractSrc = ’’+contractSrc;
6 var tokens = [];
7 var argPs = [];
8 var resolve;
9 var resultP = Q.promise(r => { resolve = r; });

10 var contract = confine(contractSrc, {Q: Q});

11 var addParam = (i, token) => {
12 tokens[i] = token;
13 var resolveArg;
14 argPs[i] = Q.promise(r => { resolveArg = r; });
15 m.set(token, (allegedSrc, allegedI, arg) => {
16 if (contractSrc !== allegedSrc) {
17 throw new Error(’unexpected contract: ’+contractSrc);
18 }
19 if (i !== allegedI) {
20 throw new Error(’unexpected side: ’+i);
21 }
22 m.delete(token);
23 resolveArg(arg);
24 return resultP;
25 });
26 };
27 for (var i = 0; i < contract.length; i++) {
28 addParam(i, def({}));
29 }
30 resolve(Q.all(argPs).then(
31 args => contract.apply(undefined, args)));
32 return tokens;
33 },
34 play: (tokenP, allegedSrc, allegedI, arg) => Q(tokenP).then(
35 token => m.get(token)(allegedSrc, allegedI, arg))
36 });
37 };

Stock
Issuer

Money
Issuer

Alice Bob

Contract
Host

$

Fig. 3. The Contract Host

Escrow
Agent

Exchange Contract	

16

18 M.S. Miller, T. Van Cutsem, and B. Tulloh

1 var makeContractHost = () => {
2 var m = WeakMap();

3 return def({
4 setup: contractSrc => {
5 contractSrc = ’’+contractSrc;
6 var tokens = [];
7 var argPs = [];
8 var resolve;
9 var resultP = Q.promise(r => { resolve = r; });

10 var contract = confine(contractSrc, {Q: Q});

11 var addParam = (i, token) => {
12 tokens[i] = token;
13 var resolveArg;
14 argPs[i] = Q.promise(r => { resolveArg = r; });
15 m.set(token, (allegedSrc, allegedI, arg) => {
16 if (contractSrc !== allegedSrc) {
17 throw new Error(’unexpected contract: ’+contractSrc);
18 }
19 if (i !== allegedI) {
20 throw new Error(’unexpected side: ’+i);
21 }
22 m.delete(token);
23 resolveArg(arg);
24 return resultP;
25 });
26 };
27 for (var i = 0; i < contract.length; i++) {
28 addParam(i, def({}));
29 }
30 resolve(Q.all(argPs).then(
31 args => contract.apply(undefined, args)));
32 return tokens;
33 },
34 play: (tokenP, allegedSrc, allegedI, arg) => Q(tokenP).then(
35 token => m.get(token)(allegedSrc, allegedI, arg))
36 });
37 };

Stock
Issuer

Money
Issuer

Alice Bob

Contract
Host

$

Fig. 3. The Contract Host

Escrow
Agent

Escrow Agent���
 gives out contracts	

17

18 M.S. Miller, T. Van Cutsem, and B. Tulloh

1 var makeContractHost = () => {
2 var m = WeakMap();

3 return def({
4 setup: contractSrc => {
5 contractSrc = ’’+contractSrc;
6 var tokens = [];
7 var argPs = [];
8 var resolve;
9 var resultP = Q.promise(r => { resolve = r; });

10 var contract = confine(contractSrc, {Q: Q});

11 var addParam = (i, token) => {
12 tokens[i] = token;
13 var resolveArg;
14 argPs[i] = Q.promise(r => { resolveArg = r; });
15 m.set(token, (allegedSrc, allegedI, arg) => {
16 if (contractSrc !== allegedSrc) {
17 throw new Error(’unexpected contract: ’+contractSrc);
18 }
19 if (i !== allegedI) {
20 throw new Error(’unexpected side: ’+i);
21 }
22 m.delete(token);
23 resolveArg(arg);
24 return resultP;
25 });
26 };
27 for (var i = 0; i < contract.length; i++) {
28 addParam(i, def({}));
29 }
30 resolve(Q.all(argPs).then(
31 args => contract.apply(undefined, args)));
32 return tokens;
33 },
34 play: (tokenP, allegedSrc, allegedI, arg) => Q(tokenP).then(
35 token => m.get(token)(allegedSrc, allegedI, arg))
36 });
37 };

Stock
Issuer

Money
Issuer

Alice Bob

Contract
Host

$

Fig. 3. The Contract Host

Escrow Agent	

18

We expect a large step semantics, of the shape M, , code ;

0
, v

0 [3].

Paths We support path expressions p (i.e., i.e. expressions which
only involve field reads). For example, mint, and prs.mint are
paths. Paths are interpreted in the context of runtime configurations,

d·c : Path �! RTConf �! Value

so that dpc = v if p is a path and ;,, p ; , v.

Reached and Arising Snapshots When verifying adherence to
policies, it is essential to consider only those snapshots (i.e., con-
figuration and code pairs) which may arise through the execution of
the given modules. For example, if we considered any well-formed
snapshots (well-formed in the sense of the type system), then we
would be unable to show, e.g. , that balances are always positive as
mandated in [6, 8]. Namely, a configuration with a negative balance
would be well-formed, but will never actually arise in the execution
of the program.

Reach(M,, code) [3] is the set of snapshots corresponding to
the start of the execution of the body of any constructor or method
called in the process of executing code in the context of M and .
Note that Reach(M,, code), corresponds to the complete body
of a method.

Arising(M) is the set of snapshots which may be reached
during execution of some initial snapshot, 0, code0.

Reach(M,, code), and Arising(M) are always defined, even
though they may be infinite sets, when the execution is infinite.

Accessible and Used Objects The principle of least authority
requires that a reference to an object does not grant permission
to access all the capabilities that object holds (i.e. to all the other
objects to which that object refers). For example, a configuration
having access to a purse object prs cannot necessarily access that
purse’s mint object, since the field mint is confidential in Purse. To
model this, we distinguish between AccAll(M,) — the set of all
objects which are accessible from the frame in through any path
— and AccPub(M,) — the set of all objects accessible through
paths which include only public fields [3].

We use the notation z : c to indicate that z is the name of an
object which exists in the heap of and belongs to class c — with
no requirement that there should be a path from the frame to this
object.

We also use the notation 2 c to express that the currently
executing method in comes from c, and 2 M that the class of
the currently executing method is defined in M.

Execution Histories An execution history, h, is a sequence of
snapshots containing all the method calls which arise during one
execution, in the order in which these calls were received, and
where the snapshots of nested calls follow the snapshot of the
nesting call. We use the operator · to compose histories, for example
h1 · (, code) · h2 is a history. The set Histories(M) is the set of
all histories which start at an initial configuration and execute code
from M.

4. Escrow Agent

The basic mint and purse system allows two untrusting components
to make a payment (see section 2 above). But this payment is a
one way transaction: a payer pays a payee. Supporting “electronic
rights” (in Miller et al. [6]’s redolent phrase) requires contracts, that
is, two way exchanges where some the currency and some goods
(e.g shares) change hands atomically — again in an environment
where neither payee nor payer trust each other. The remainder
of the Escrow case study uses mints and purses to build such a
Escrow Contact system. We now describe our Grace translation /
simplification of the escrow system, showing its implementation
and the capability policies that are crucial to its correctness.

def escrowAgent = object { // well known singleton

class contract.new(name’ : String) { ... } // see fig 3

var terms : String

var currentContract : Contract

var waitingForSeller := true

// called by seller to request a seller �side contract
method getSellerContract(terms’: String) �> Contract {

if (! waitingForSeller)

then { Error. raise "already has seller" }
terms := terms’

waitingForSeller := false // now waiting for a buyer
currentContract := contract .new(terms)

return currentContract

}

// called by buyer to request a buyer�side contract
method getBuyerContract(terms’ : String) �> Contract {

if (waitingForSeller) then {
Error. raise "waiting for a seller" }

if (terms != terms’) then {
Error. raise "terms don’t match" }

def thisContract = currentContract

terms := "invalid terms"
currentContract := contract .new(terms)

waitingForSeller := true

return thisContract

}

}

Figure 3. The core of the Escrow Agent translated into Grace.

Given that each side is untrusting of the other, the first challenge
is for both sides to have received the same contract object with
the same understanding that this object will embody the actual
contract. Following Miller et al. [6]’s design we provide a trusted
escrow agent object that issues contracts to buyers and sellers.

Our escrow agent is shown in figure 3. Compared with Miller
et al. [6]’s escrow agent, this is simpler and more straightfor-
ward, because again our code intentionally focuses on the core
behaviour of the design, especially regarding the object capabili-
ties, rather than details of middleware infrastructures. Our design
also makes a number of other simplifications: we assume Grace
objects and classes are single-threaded as if in fully-synchronised
Java; and we adopt a very asymmetric protocol where the seller
(payee) must always ‘move’ first, followed by the buyer (payer).
The waitingForSeller variable keeps track of who should move next,
the buyer or the seller.

Thus, the seller asks for and is returned a contract; when a
matching buyer arrives they will be issued the same contract object.
// Alice the seller moves first
def alice = object {

def alicesContract =

escrowAgent.getSellerContract("some terms")

...

// Bob the buyer moves second
def bob = object {

def bobsContract =

escrowAgent.getBuyerContract("some terms")

...

Of course, a real implementation would need to keep track of a
list of potential buyers, so that a buyer requesting a contract with
no matching seller would not deadlock — but these are essentially
bookkeeping issues that do not affect the exercise of object capa-
bilities within the system.

3 2014/6/3

Escrow Agent	

19

We expect a large step semantics, of the shape M, , code ;

0
, v

0 [3].

Paths We support path expressions p (i.e., i.e. expressions which
only involve field reads). For example, mint, and prs.mint are
paths. Paths are interpreted in the context of runtime configurations,

d·c : Path �! RTConf �! Value

so that dpc = v if p is a path and ;,, p ; , v.

Reached and Arising Snapshots When verifying adherence to
policies, it is essential to consider only those snapshots (i.e., con-
figuration and code pairs) which may arise through the execution of
the given modules. For example, if we considered any well-formed
snapshots (well-formed in the sense of the type system), then we
would be unable to show, e.g. , that balances are always positive as
mandated in [6, 8]. Namely, a configuration with a negative balance
would be well-formed, but will never actually arise in the execution
of the program.

Reach(M,, code) [3] is the set of snapshots corresponding to
the start of the execution of the body of any constructor or method
called in the process of executing code in the context of M and .
Note that Reach(M,, code), corresponds to the complete body
of a method.

Arising(M) is the set of snapshots which may be reached
during execution of some initial snapshot, 0, code0.

Reach(M,, code), and Arising(M) are always defined, even
though they may be infinite sets, when the execution is infinite.

Accessible and Used Objects The principle of least authority
requires that a reference to an object does not grant permission
to access all the capabilities that object holds (i.e. to all the other
objects to which that object refers). For example, a configuration
having access to a purse object prs cannot necessarily access that
purse’s mint object, since the field mint is confidential in Purse. To
model this, we distinguish between AccAll(M,) — the set of all
objects which are accessible from the frame in through any path
— and AccPub(M,) — the set of all objects accessible through
paths which include only public fields [3].

We use the notation z : c to indicate that z is the name of an
object which exists in the heap of and belongs to class c — with
no requirement that there should be a path from the frame to this
object.

We also use the notation 2 c to express that the currently
executing method in comes from c, and 2 M that the class of
the currently executing method is defined in M.

Execution Histories An execution history, h, is a sequence of
snapshots containing all the method calls which arise during one
execution, in the order in which these calls were received, and
where the snapshots of nested calls follow the snapshot of the
nesting call. We use the operator · to compose histories, for example
h1 · (, code) · h2 is a history. The set Histories(M) is the set of
all histories which start at an initial configuration and execute code
from M.

4. Escrow Agent

The basic mint and purse system allows two untrusting components
to make a payment (see section 2 above). But this payment is a
one way transaction: a payer pays a payee. Supporting “electronic
rights” (in Miller et al. [6]’s redolent phrase) requires contracts, that
is, two way exchanges where some the currency and some goods
(e.g shares) change hands atomically — again in an environment
where neither payee nor payer trust each other. The remainder
of the Escrow case study uses mints and purses to build such a
Escrow Contact system. We now describe our Grace translation /
simplification of the escrow system, showing its implementation
and the capability policies that are crucial to its correctness.

def escrowAgent = object { // well known singleton

class contract.new(name’ : String) { ... } // see fig 3

var terms : String

var currentContract : Contract

var waitingForSeller := true

// called by seller to request a seller �side contract
method getSellerContract(terms’: String) �> Contract {

if (! waitingForSeller)

then { Error. raise "already has seller" }
terms := terms’

waitingForSeller := false // now waiting for a buyer
currentContract := contract .new(terms)

return currentContract

}

// called by buyer to request a buyer�side contract
method getBuyerContract(terms’ : String) �> Contract {

if (waitingForSeller) then {
Error. raise "waiting for a seller" }

if (terms != terms’) then {
Error. raise "terms don’t match" }

def thisContract = currentContract

terms := "invalid terms"
currentContract := contract .new(terms)

waitingForSeller := true

return thisContract

}

}

Figure 3. The core of the Escrow Agent translated into Grace.

Given that each side is untrusting of the other, the first challenge
is for both sides to have received the same contract object with
the same understanding that this object will embody the actual
contract. Following Miller et al. [6]’s design we provide a trusted
escrow agent object that issues contracts to buyers and sellers.

Our escrow agent is shown in figure 3. Compared with Miller
et al. [6]’s escrow agent, this is simpler and more straightfor-
ward, because again our code intentionally focuses on the core
behaviour of the design, especially regarding the object capabili-
ties, rather than details of middleware infrastructures. Our design
also makes a number of other simplifications: we assume Grace
objects and classes are single-threaded as if in fully-synchronised
Java; and we adopt a very asymmetric protocol where the seller
(payee) must always ‘move’ first, followed by the buyer (payer).
The waitingForSeller variable keeps track of who should move next,
the buyer or the seller.

Thus, the seller asks for and is returned a contract; when a
matching buyer arrives they will be issued the same contract object.
// Alice the seller moves first
def alice = object {

def alicesContract =

escrowAgent.getSellerContract("some terms")

...

// Bob the buyer moves second
def bob = object {

def bobsContract =

escrowAgent.getBuyerContract("some terms")

...

Of course, a real implementation would need to keep track of a
list of potential buyers, so that a buyer requesting a contract with
no matching seller would not deadlock — but these are essentially
bookkeeping issues that do not affect the exercise of object capa-
bilities within the system.

3 2014/6/3

We expect a large step semantics, of the shape M, , code ;

0
, v

0 [3].

Paths We support path expressions p (i.e., i.e. expressions which
only involve field reads). For example, mint, and prs.mint are
paths. Paths are interpreted in the context of runtime configurations,

d·c : Path �! RTConf �! Value

so that dpc = v if p is a path and ;,, p ; , v.

Reached and Arising Snapshots When verifying adherence to
policies, it is essential to consider only those snapshots (i.e., con-
figuration and code pairs) which may arise through the execution of
the given modules. For example, if we considered any well-formed
snapshots (well-formed in the sense of the type system), then we
would be unable to show, e.g. , that balances are always positive as
mandated in [6, 8]. Namely, a configuration with a negative balance
would be well-formed, but will never actually arise in the execution
of the program.

Reach(M,, code) [3] is the set of snapshots corresponding to
the start of the execution of the body of any constructor or method
called in the process of executing code in the context of M and .
Note that Reach(M,, code), corresponds to the complete body
of a method.

Arising(M) is the set of snapshots which may be reached
during execution of some initial snapshot, 0, code0.

Reach(M,, code), and Arising(M) are always defined, even
though they may be infinite sets, when the execution is infinite.

Accessible and Used Objects The principle of least authority
requires that a reference to an object does not grant permission
to access all the capabilities that object holds (i.e. to all the other
objects to which that object refers). For example, a configuration
having access to a purse object prs cannot necessarily access that
purse’s mint object, since the field mint is confidential in Purse. To
model this, we distinguish between AccAll(M,) — the set of all
objects which are accessible from the frame in through any path
— and AccPub(M,) — the set of all objects accessible through
paths which include only public fields [3].

We use the notation z : c to indicate that z is the name of an
object which exists in the heap of and belongs to class c — with
no requirement that there should be a path from the frame to this
object.

We also use the notation 2 c to express that the currently
executing method in comes from c, and 2 M that the class of
the currently executing method is defined in M.

Execution Histories An execution history, h, is a sequence of
snapshots containing all the method calls which arise during one
execution, in the order in which these calls were received, and
where the snapshots of nested calls follow the snapshot of the
nesting call. We use the operator · to compose histories, for example
h1 · (, code) · h2 is a history. The set Histories(M) is the set of
all histories which start at an initial configuration and execute code
from M.

4. Escrow Agent

The basic mint and purse system allows two untrusting components
to make a payment (see section 2 above). But this payment is a
one way transaction: a payer pays a payee. Supporting “electronic
rights” (in Miller et al. [6]’s redolent phrase) requires contracts, that
is, two way exchanges where some the currency and some goods
(e.g shares) change hands atomically — again in an environment
where neither payee nor payer trust each other. The remainder
of the Escrow case study uses mints and purses to build such a
Escrow Contact system. We now describe our Grace translation /
simplification of the escrow system, showing its implementation
and the capability policies that are crucial to its correctness.

def escrowAgent = object { // well known singleton

class contract.new(name’ : String) { ... } // see fig 3

var terms : String

var currentContract : Contract

var waitingForSeller := true

// called by seller to request a seller �side contract
method getSellerContract(terms’: String) �> Contract {

if (! waitingForSeller)

then { Error. raise "already has seller" }
terms := terms’

waitingForSeller := false // now waiting for a buyer
currentContract := contract .new(terms)

return currentContract

}

// called by buyer to request a buyer�side contract
method getBuyerContract(terms’ : String) �> Contract {

if (waitingForSeller) then {
Error. raise "waiting for a seller" }

if (terms != terms’) then {
Error. raise "terms don’t match" }

def thisContract = currentContract

terms := "invalid terms"
currentContract := contract .new(terms)

waitingForSeller := true

return thisContract

}

}

Figure 3. The core of the Escrow Agent translated into Grace.

Given that each side is untrusting of the other, the first challenge
is for both sides to have received the same contract object with
the same understanding that this object will embody the actual
contract. Following Miller et al. [6]’s design we provide a trusted
escrow agent object that issues contracts to buyers and sellers.

Our escrow agent is shown in figure 3. Compared with Miller
et al. [6]’s escrow agent, this is simpler and more straightfor-
ward, because again our code intentionally focuses on the core
behaviour of the design, especially regarding the object capabili-
ties, rather than details of middleware infrastructures. Our design
also makes a number of other simplifications: we assume Grace
objects and classes are single-threaded as if in fully-synchronised
Java; and we adopt a very asymmetric protocol where the seller
(payee) must always ‘move’ first, followed by the buyer (payer).
The waitingForSeller variable keeps track of who should move next,
the buyer or the seller.

Thus, the seller asks for and is returned a contract; when a
matching buyer arrives they will be issued the same contract object.
// Alice the seller moves first
def alice = object {

def alicesContract =

escrowAgent.getSellerContract("some terms")

...

// Bob the buyer moves second
def bob = object {

def bobsContract =

escrowAgent.getBuyerContract("some terms")

...

Of course, a real implementation would need to keep track of a
list of potential buyers, so that a buyer requesting a contract with
no matching seller would not deadlock — but these are essentially
bookkeeping issues that do not affect the exercise of object capa-
bilities within the system.

3 2014/6/3

Contract���
	

20

Distributed Electronic Rights in JavaScript 15

phase 1

phase 1
All

phase 2

Race

phase 2 cancel

cancel failOnly

failOnly

1 var transfer = (decisionP, srcPurseP, dstPurseP, amount) => {
2 var makeEscrowPurseP = Q.join(srcPurseP ! makePurse,
3 dstPurseP ! makePurse);
4 var escrowPurseP = makeEscrowPurseP ! ();

5 Q(decisionP).then(// setup phase 2
6 _ => { dstPurseP ! deposit(amount, escrowPurseP); },
7 _ => { srcPurseP ! deposit(amount, escrowPurseP); });

8 return escrowPurseP ! deposit(amount, srcPurseP); // phase 1
9 };

10 var failOnly = cancellationP => Q(cancellationP).then(
11 cancellation => { throw cancellation; });

12 var escrowExchange = (a, b) => { // a from Alice , b from Bob
13 var decide;
14 var decisionP = Q.promise(resolve => { decide = resolve; });

15 decide(Q.race([Q.all([
16 transfer(decisionP, a.moneySrcP, b.moneyDstP, b.moneyNeeded),
17 transfer(decisionP, b.stockSrcP, a.stockDstP, a.stockNeeded)
18]),
19 failOnly(a.cancellationP),
20 failOnly(b.cancellationP)]));
21 return decisionP;
22 };

Fig. 2. The Escrow Exchange Contract

^ (code = escrowAgent.getSellerContract()
_ code = escrowAgent.getBuyerContract())].

In other words, if execution of code external to M (2M

0)
leads to a configuration which has access to contract object c

(dcc02AccAll(M ⇤M0
,

0) and c :0
contract), then either c was

already accessible to M

0 (dcc0 2 AccAll(M ⇤ M

0
,)), or c was

returned through execution of escrowAgent.getSellerContract(),
or escrowAgent.getBuyerContract().

4.1.4 Pol A4: Interplay of getBuyerContract and

getSellerContract

Pol A4, vrs1 guarantees that a call of getSellerContract(txt) fol-
lowed by a call to getBuyerContract(txt) will return the same
object, provided that it is not preceded by an unmatched call of
getSellerContract(), and provided that there is no intermediate
call on the escrowAgent between the two calls.

We first define the predicate Matched() on histories, which
requires that either there are no calls on escrowAgent, or that
any getSellerContract() are followed by a corresponding call of
getBuyerContract():
Matched(h) iff (escrowAgent.getSellerContract(txt),) /2 h,
or there exists h1, h2, h3 such that
h = h1 · (, escrowAgent.getSellerContract(txt))·

h2 · (, escrowAgent.getBuyerContract(txt)) · h3,
and Matched(h1), and (escrowAgent.get......(),) /2 h2, and
Matched(h3). We now express the policy:

Module M satisfies policy Pol A4

iff
8 M

0
, h1, h2, h3, txt : String. 8h 2 Histories(M ⇤M0).

h = h1 · (1, escrowAgent.getSellerContract(txt)) · h2 ·
(2, escrowAgent.getBuyerContract(txt)) · h3

^ Matched(h1)
^ (escrowAgent.get...Contract(),) /2 h2

=)
93,4, v.

M ⇤M0
1, escrowAgent.getSellerContract(txt) ; 3, v

^ M⇤M0
2, escrowAgent.getBuyerContract(txt) ; 4, v.

The policy from above, together with Pol A1, vrs1 will guaran-
tee that the returned value is a contract, which is new in 1.

We now consider the deny-counterpart of that policy, which says
that calls of getSellerContract() only succeed if the previous calls
on escrowAgent are matched correctly: We omit the complemen-
tary policy for the calls of getBuyerContract().

Module M satisfies policy Pol A4, vrs2

iff
8 M

0
, h1, h2,1,2, v. 8h 2 Histories(M ⇤M0).

h = h1 · (1, escrowAgent.getSellerContract(txt)) · h2

^ M⇤M0
,1, escrowAgent.getSellerContract(txt) ; 3, v

^ v :3 contract

=)
Matched(h1)

import "mint" as m

class contract.new(name’ : String) {

var offered := false

var sellersGoods : m.Purse //Purse in module m
var amount : Number

var price : Number

var sellersMoney : m.Purse

method offer(sellersGoods’ : m.Purse,

amount’ : Number,

price ’ : Number,

sellersMoney’ : m.Purse) {
sellersGoods := sellersGoods’

amount := amount’

price := price ’

sellersMoney := sellersMoney’

offered := true

}

method bid(buyersGoods : m.Purse,

amount’ : Number,

price ’ : Number,

buyersMoney : m.Purse) �> Done {
if (! offered) then { Error. raise "Not offered" }
if ((amount != amount’) || (price != price ’)) then

{ Error. raise "Bid/Offer mismatch" }
if ((amount < 0) || (price < 0)) then

{ Error. raise "Bid/Offer fraud" }

// check purses are from the same mints
buyersGoods.deposit(0, sellersGoods)

buyersMoney.deposit(0, sellersMoney)

// here we go
def moneyEscrow : m.Purse = buyersMoney.makePurse

moneyEscrow.deposit(price, buyersMoney)

// exceptions are not caught here , so end the bid

def goodsEscrow : m.Purse = sellersGoods.makePurse

try { goodsEscrow.deposit(amount, sellersGoods) }
catch { �> buyersMoney.deposit(price, moneyEscrow);

Error. raise "TXN FAILURE" }

sellersMoney.deposit(price, moneyEscrow)

buyersGoods.deposit(amount, goodsEscrow)

}
}

Figure 4. The Escrow Contract translated into Grace.

5. Escrow Contract

Figure 4 implements our version of the actual escrow contract ob-
ject. Again, this uses a protocol where we expect the seller to
move first and populate the contract, and then the buyer to move
and accept the contract. The seller must pass two purses into the
offer method — the sellersGoods purse that contains the goods to
be sold, and sellersMoney a (presumably empty) temporary purse
that will recieve the money. Similarly the buyer supplies an empty
buyersGoods purse and a (temporary) buyersMoney purse that con-
tains the payment when they call the bid method. The transaction
suceeds if the bid method completes.
// Alice the seller
def mDst = mint.newPurse("Alice’s mDst", 0)

def gSrc = goods.newPurse("Alice’s gSrc", 7)

alicesContract. offer (gSrc, 7, 10, mDst)

// Bob the buyer
def mSrc = mint.newPurse("Bob’s mSrc", 10)

5 2014/6/3

Contract	

21

^ (code = escrowAgent.getSellerContract()
_ code = escrowAgent.getBuyerContract())].

In other words, if execution of code external to M (2M

0)
leads to a configuration which has access to contract object c

(dcc02AccAll(M ⇤M0
,

0) and c :0
contract), then either c was

already accessible to M

0 (dcc0 2 AccAll(M ⇤ M

0
,)), or c was

returned through execution of escrowAgent.getSellerContract(),
or escrowAgent.getBuyerContract().

4.1.4 Pol A4: Interplay of getBuyerContract and

getSellerContract

Pol A4, vrs1 guarantees that a call of getSellerContract(txt) fol-
lowed by a call to getBuyerContract(txt) will return the same
object, provided that it is not preceded by an unmatched call of
getSellerContract(), and provided that there is no intermediate
call on the escrowAgent between the two calls.

We first define the predicate Matched() on histories, which
requires that either there are no calls on escrowAgent, or that
any getSellerContract() are followed by a corresponding call of
getBuyerContract():
Matched(h) iff (escrowAgent.getSellerContract(txt),) /2 h,
or there exists h1, h2, h3 such that
h = h1 · (, escrowAgent.getSellerContract(txt))·

h2 · (, escrowAgent.getBuyerContract(txt)) · h3,
and Matched(h1), and (escrowAgent.get......(),) /2 h2, and
Matched(h3). We now express the policy:

Module M satisfies policy Pol A4

iff
8 M

0
, h1, h2, h3, txt : String. 8h 2 Histories(M ⇤M0).

h = h1 · (1, escrowAgent.getSellerContract(txt)) · h2 ·
(2, escrowAgent.getBuyerContract(txt)) · h3

^ Matched(h1)
^ (escrowAgent.get...Contract(),) /2 h2

=)
93,4, v.

M ⇤M0
1, escrowAgent.getSellerContract(txt) ; 3, v

^ M⇤M0
2, escrowAgent.getBuyerContract(txt) ; 4, v.

The policy from above, together with Pol A1, vrs1 will guaran-
tee that the returned value is a contract, which is new in 1.

We now consider the deny-counterpart of that policy, which says
that calls of getSellerContract() only succeed if the previous calls
on escrowAgent are matched correctly: We omit the complemen-
tary policy for the calls of getBuyerContract().

Module M satisfies policy Pol A4, vrs2

iff
8 M

0
, h1, h2,1,2, v. 8h 2 Histories(M ⇤M0).

h = h1 · (1, escrowAgent.getSellerContract(txt)) · h2

^ M⇤M0
,1, escrowAgent.getSellerContract(txt) ; 3, v

^ v :3 contract

=)
Matched(h1)

import "mint" as m

class contract.new(name’ : String) {

var offered := false

var sellersGoods : m.Purse //Purse in module m
var amount : Number

var price : Number

var sellersMoney : m.Purse

method offer(sellersGoods’ : m.Purse,

amount’ : Number,

price ’ : Number,

sellersMoney’ : m.Purse) {
sellersGoods := sellersGoods’

amount := amount’

price := price ’

sellersMoney := sellersMoney’

offered := true

}

method bid(buyersGoods : m.Purse,

amount’ : Number,

price ’ : Number,

buyersMoney : m.Purse) �> Done {
if (! offered) then { Error. raise "Not offered" }
if ((amount != amount’) || (price != price ’)) then

{ Error. raise "Bid/Offer mismatch" }
if ((amount < 0) || (price < 0)) then

{ Error. raise "Bid/Offer fraud" }

// check purses are from the same mints
buyersGoods.deposit(0, sellersGoods)

buyersMoney.deposit(0, sellersMoney)

// here we go
def moneyEscrow : m.Purse = buyersMoney.makePurse

moneyEscrow.deposit(price, buyersMoney)

// exceptions are not caught here , so end the bid

def goodsEscrow : m.Purse = sellersGoods.makePurse

try { goodsEscrow.deposit(amount, sellersGoods) }
catch { �> buyersMoney.deposit(price, moneyEscrow);

Error. raise "TXN FAILURE" }

sellersMoney.deposit(price, moneyEscrow)

buyersGoods.deposit(amount, goodsEscrow)

}
}

Figure 4. The Escrow Contract translated into Grace.

5. Escrow Contract

Figure 4 implements our version of the actual escrow contract ob-
ject. Again, this uses a protocol where we expect the seller to
move first and populate the contract, and then the buyer to move
and accept the contract. The seller must pass two purses into the
offer method — the sellersGoods purse that contains the goods to
be sold, and sellersMoney a (presumably empty) temporary purse
that will recieve the money. Similarly the buyer supplies an empty
buyersGoods purse and a (temporary) buyersMoney purse that con-
tains the payment when they call the bid method. The transaction
suceeds if the bid method completes.
// Alice the seller
def mDst = mint.newPurse("Alice’s mDst", 0)

def gSrc = goods.newPurse("Alice’s gSrc", 7)

alicesContract. offer (gSrc, 7, 10, mDst)

// Bob the buyer
def mSrc = mint.newPurse("Bob’s mSrc", 10)

5 2014/6/3

def gDst = goods.newPurse("Bob’s’s gDst", 0)

bobsContract.bid(gDst, 7, 10, mSrc)

The seller can cancel the contract at any time before settlement
by simply emptying their sellersGoods purse: this will cause the
overall transaction to fail when the buyer makes a bid. Similarly
the buyer can cancel by not calling bid. The only subtlety is the
use of the moneyEscrow and goodsEscrow purses towards the end
of the bid method — the goods and money are first moved into
these escrow purses so that an unscrupulous party cannot remove
the goods or money while the transaction is in progress. From
our capability policy perspective, this complexity is essential, not
accidental, because it captures the heart of the escrow behaviour.

5.1 Capability Policies for Contracts

5.1.1 Pol C1: Effects and conditions of exchange

The key policy for the escrow contract is that once it receives a bid
matching the offer, it performs the transfer of goods and moneys,
provided the corresponding purses come from the same mint. Here
we write the deny counterpart of this policy, which says that if,
as the result of a bid, the buyer’s goods balance changes, then the
bid must have been preceded by the creation of pairs of purses in
corresponding mints, and of an offer which matched the bid:

Module M satisfies policy Pol C1

iff
8 M

0
, h1, h2, c,,

0
, v.8amt, prc : N.

8h2Histories(M ⇤M0).
c : contract ^ pg : Purse

^ h = h1 · (, c.bid(pg, amt, prc, pm)) · h4

^ M ⇤M0
,, c.bid(pg, amt, prc, pm) ;

0
, v

^ dpg.balancec0 6= dpg.balancec
=)

(pm : Purse ^ pg : Purse

^ dpg.balancec0 = dpg.balancec + amt

^ dpm.balancec0 = dpm.balancec � prc

^ dpg.balancec � prc

^
[9p0g, p0m,mntm,mntg, h3, h4,

00
,1,

0
1,2,

0
2,3,

0
3,4,

0
4.

h1 = h3 · (00
, c.o↵er(p0g, amt, prc, p

0
m)) · h4

^ mntm :2 Mint ^ mntg :4 Mint

^ (1,mntm.makePurse()), (3,mntg.makePurse())2h1

^ (2,mntm.makePurse()), (4,mntg.makePurse())2h3

^ M ⇤M0
,1,mntm.makePurse() ; pm,

0
1

^ M ⇤M0
,2,mntm.makePurse() ; p

0
m,

0
2

^ M ⇤M0
,3,mntg.makePurse() ; pg,

0
3

^ M ⇤M0
,4,mntg.makePurse() ; p

0
g,

0
4

^ pm :0
1
Purse ^ p

0
m :0

2
Purse

^ pg :0
3
Purse ^ p

0
g :0

4
Purse

^ dp0g.balancec0 = dp0g.balancec � amt

^ dp0m.balancec0 = dp0m.balancec + prc

^ ((, c.bid(p00g , amt

00
, prc

00
, p

00
m)) 2 h3 ! amt 6=

amt

00
...)

^ dp0g.balancec � amt])

In the above, pm and pg stand for the buyer’s money and goods’
purse, while p

0
m and p

0
g stand for the buyer’s money and goods’

purse. The penultimate line in the conclusion guarantees that there
is no matching bid between the offer at 00 and the bid at , and the
last line guarantees that there is enough goods in the seller’s goods’
purse.

5.1.2 Pol C2: Bids do not leak references

Finally, this policy guarantees that execution of a bid does not leak
references to third parties — satisfying the requirement that the
escrow system mediate between two mutually untrusting objects.

Module M satisfies policy Pol C2

iff
8 M

0
,, c, o, o

0
.

(, c.bid(pg, amt, prc, pm)) 2 Arising(M ⇤M0).
^ c : contract

^ M ⇤M0
,, c.bid(pg, amt, prc, pm) ;

0
, v

^ o 2 AccAll(o0,0)
=)

o 2 AccAll(o0,)

In other words, if after execution of c.bid(pg, amt, prc, pm), the
object o0 has access to the object o, then it already had access to it
before execution of the call.

6. Conclusions and Future Work

In this paper we have presented a rational reconstruction of Miller,
Cutsem, and Tulloh’s contract exchange escrow case study. We
have translated the code from JavaScript to Grace, and have re-
moved code corresponding to the crosscutting concerns of distri-
bution, asynchrony, genericity, symmetry, leaving the core of the
program that records, exchanges, and exercises object capabilities.
We believe that our Grace encoding will be a valuable starting point
for anybody who is interested in the capability concerns of escrow,
or in general questions around electronic moneys.

We have proposed some of the capability policies that must
be maintained to demonstrate that the escrow design meets its
specifications, and clarified them through formal specifications.

In further work, we want to complete the definition of execution
observations, complete the policies, consider whether they are min-
imal (can any of these be inferred from the others),and prove that
the Grace code adheres to these policies.

Acknowledgments This work is supported by the Royal Society
of New Zealand Marsden Fund.

References

[1] Andrew P Black, Kim B Bruce, Michael Homer, and James Noble.
Grace: the absence of (inessential) difficulty. In Onward! ACM, 2012.

[2] Sophia Drossopoulou and James Noble. The need for capability poli-
cies. In FTfJP, 2013.

[3] Sophia Drossopoulou and James Noble. Towards capability policy
specification and verification. available fron authors’ website, May
2014. http://ecs.victoria.ac.nz/Main/TechnicalReportSeries.

[4] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok,
P. Müller, J. Kiniry, and P. Chalin. JML Reference Manual. Iowa State
Univ. www.jmlspecs.org, February 2007.

[5] B. Liskov and J. Guttag. Abstraction and Specification in Program
Development. MIT Press, 1986.

[6] Mark S. Miller, Tom Van Cutsem, and Bill Tulloh. Distributed elec-
tronic rights in JavaScript. In ESOP, 2013.

[7] Mark Samuel Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Baltimore,
Maryland, 2006.

[8] Mark Samuel Miller, Chip Morningstar, and Bill Frantz. Capability-
based Financial Instruments: From Object to Capabilities. In Financial
Cryptography. Springer, 2000.

6 2014/6/3

Contract	

22

^ (code = escrowAgent.getSellerContract()
_ code = escrowAgent.getBuyerContract())].

In other words, if execution of code external to M (2M

0)
leads to a configuration which has access to contract object c

(dcc02AccAll(M ⇤M0
,

0) and c :0
contract), then either c was

already accessible to M

0 (dcc0 2 AccAll(M ⇤ M

0
,)), or c was

returned through execution of escrowAgent.getSellerContract(),
or escrowAgent.getBuyerContract().

4.1.4 Pol A4: Interplay of getBuyerContract and

getSellerContract

Pol A4, vrs1 guarantees that a call of getSellerContract(txt) fol-
lowed by a call to getBuyerContract(txt) will return the same
object, provided that it is not preceded by an unmatched call of
getSellerContract(), and provided that there is no intermediate
call on the escrowAgent between the two calls.

We first define the predicate Matched() on histories, which
requires that either there are no calls on escrowAgent, or that
any getSellerContract() are followed by a corresponding call of
getBuyerContract():
Matched(h) iff (escrowAgent.getSellerContract(txt),) /2 h,
or there exists h1, h2, h3 such that
h = h1 · (, escrowAgent.getSellerContract(txt))·

h2 · (, escrowAgent.getBuyerContract(txt)) · h3,
and Matched(h1), and (escrowAgent.get......(),) /2 h2, and
Matched(h3). We now express the policy:

Module M satisfies policy Pol A4

iff
8 M

0
, h1, h2, h3, txt : String. 8h 2 Histories(M ⇤M0).

h = h1 · (1, escrowAgent.getSellerContract(txt)) · h2 ·
(2, escrowAgent.getBuyerContract(txt)) · h3

^ Matched(h1)
^ (escrowAgent.get...Contract(),) /2 h2

=)
93,4, v.

M ⇤M0
1, escrowAgent.getSellerContract(txt) ; 3, v

^ M⇤M0
2, escrowAgent.getBuyerContract(txt) ; 4, v.

The policy from above, together with Pol A1, vrs1 will guaran-
tee that the returned value is a contract, which is new in 1.

We now consider the deny-counterpart of that policy, which says
that calls of getSellerContract() only succeed if the previous calls
on escrowAgent are matched correctly: We omit the complemen-
tary policy for the calls of getBuyerContract().

Module M satisfies policy Pol A4, vrs2

iff
8 M

0
, h1, h2,1,2, v. 8h 2 Histories(M ⇤M0).

h = h1 · (1, escrowAgent.getSellerContract(txt)) · h2

^ M⇤M0
,1, escrowAgent.getSellerContract(txt) ; 3, v

^ v :3 contract

=)
Matched(h1)

import "mint" as m

class contract.new(name’ : String) {

var offered := false

var sellersGoods : m.Purse //Purse in module m
var amount : Number

var price : Number

var sellersMoney : m.Purse

method offer(sellersGoods’ : m.Purse,

amount’ : Number,

price ’ : Number,

sellersMoney’ : m.Purse) {
sellersGoods := sellersGoods’

amount := amount’

price := price ’

sellersMoney := sellersMoney’

offered := true

}

method bid(buyersGoods : m.Purse,

amount’ : Number,

price ’ : Number,

buyersMoney : m.Purse) �> Done {
if (! offered) then { Error. raise "Not offered" }
if ((amount != amount’) || (price != price ’)) then

{ Error. raise "Bid/Offer mismatch" }
if ((amount < 0) || (price < 0)) then

{ Error. raise "Bid/Offer fraud" }

// check purses are from the same mints
buyersGoods.deposit(0, sellersGoods)

buyersMoney.deposit(0, sellersMoney)

// here we go
def moneyEscrow : m.Purse = buyersMoney.makePurse

moneyEscrow.deposit(price, buyersMoney)

// exceptions are not caught here , so end the bid

def goodsEscrow : m.Purse = sellersGoods.makePurse

try { goodsEscrow.deposit(amount, sellersGoods) }
catch { �> buyersMoney.deposit(price, moneyEscrow);

Error. raise "TXN FAILURE" }

sellersMoney.deposit(price, moneyEscrow)

buyersGoods.deposit(amount, goodsEscrow)

}
}

Figure 4. The Escrow Contract translated into Grace.

5. Escrow Contract

Figure 4 implements our version of the actual escrow contract ob-
ject. Again, this uses a protocol where we expect the seller to
move first and populate the contract, and then the buyer to move
and accept the contract. The seller must pass two purses into the
offer method — the sellersGoods purse that contains the goods to
be sold, and sellersMoney a (presumably empty) temporary purse
that will recieve the money. Similarly the buyer supplies an empty
buyersGoods purse and a (temporary) buyersMoney purse that con-
tains the payment when they call the bid method. The transaction
suceeds if the bid method completes.
// Alice the seller
def mDst = mint.newPurse("Alice’s mDst", 0)

def gSrc = goods.newPurse("Alice’s gSrc", 7)

alicesContract. offer (gSrc, 7, 10, mDst)

// Bob the buyer
def mSrc = mint.newPurse("Bob’s mSrc", 10)

5 2014/6/3

Trust���
 what does trust mean?���
	
who trusts whom?���
	

! Buyer and Sellers 	

! Trust their Mints & Purses, and the Escrow Agent	

! Don’t trust each other — cannot have mutual references	

! Mints & Purses trust nobody 	

!  Escrow Agent (and Contract) 	

! Don’t trust Buyers or Sellers or Mints or Purses…	

! So what guarantees can they supply?	
 23

Risk ���
 what’s the worst that can happen if I trust?	

Buying 10 apples for £10, £1000 in your purse. New purse: £1.	

! Hand out main purse: best case 10🍏 £10; worst: 0🍎 £1000	

! Temporary purse: 	
 	
 	
 10🍏 £11; 0🍎 £11	

!  Escrow/w main purse: 10🍏 £15; 0🍎 £1000	

!  Escrow/ temp purse: 10🍏 £17; 0🍎 £2	

!  Say we really trust escrow: 10🍏 £15; 0🍎 £0	

24

