
Managing Variability in Systems:
Oh What a Tangled OS We Weave

Stuart Bray, Marco Yuen ,Yvonne Coady

University of Victoria
{sbray, marcoy}@csc.uvic.ca, ycoady@cs.uvic.ca

Marc E. Fiuczynski
Princeton University

mef@cs.princeton.edu

This position paper outlines challenges associated with managing OS
variants, key ways in which AOP could help, and criteria for
adoption that we believe AOP must meet.

1. INTRODUCTION
Major variants to a mainline Linux kernel are typically represented in
terms of high level frameworks and low level patches. Frameworks
are typically vetted several times in the operating systems
community before becoming mainlined into the kernel. Patches that
quietly sprinkle the necessary hooks for the framework throughout
the existing system receive less attention. Developers trying to
manage variants manifested as patches are given no support when
trying to understand the code.
Frameworks that have recently been mainlined include Linux
Security Modules (LSM) [10], Advanced Linux Sound Architecture
(ALSA) [1], and Video4Linux [13]. There are many others possibly
soon to be mainlined, such as Class-Based Kernel Resource
Management (CKRM) [5] and Linux Trace Toolkit (LTT) [11].
These are just a few of the many frameworks that resort to
rudimentary patching schemes.
Though aspect-oriented programming (AOP) [9, 4] is poised to help,
criteria for its adoption must ensure smooth integration with current
approaches and tools within a systems context. To this end, we
examine a concrete example, describe how AOP could help, establish
criteria of adoption, and finally describe an experiment we plan to
explore.

2. EXAMPLE: CKRM
Class-based Kernel Resource Management (CKRM) [5] project is
developing new kernel mechanisms to provide differentiated service
to shared system resources. These resources include CPU, memory,
I/O and network bandwidth. At a low level, changes associated with
this variant have been organized into several patches, as outlined in
Table 1. The table shows that some patches are self-contained,
involving no changes to the existing code, whereas others change
collections of files.
In more detail, these patches dictate where “hunks” of code are
applied, at specific line numbers or relative offsets within specific
files, throughout the system. For example, this portion of a CKRM
patch (00-core.ckrm-E12.patch):

@@ -619,6 +623,9 @@
 }
 else
 return -EPERM;
+
+ ckrm_cb_gid();
+
 return 0;
}

instruments an existing file with a call to the ckrm_cb_gib() function.
Line numbers are represented as relative offsets indicated by
@@<line-info>@@. Precisely which function is instrumented is
not clear looking at the patch. But upon closer inspection some
patterns are clear – all calls to ckrm_cb_gid()/uid() (6 in total)
directly precede return statements, and ckrm_cb_exit()/newtask() are
at the beginning and end of functions in exit/fork.c.

Leveraging these clues to trace upwards to higher level design intent
is impaired in this representation. Developers are faced with
minimal support for reasoning about interaction between the variant
and the mainline kernel, prolonging the community consensus phase
(roughly 2 years for LSM) for incorporating otherwise simple hooks.
Moreover, as the mainline kernel evolves, the points during the
execution of the kernel when the hooks should fire may also evolve.
The problem is compounded as more variants are introduced, further
bogging down the overall process of mainline decisions.

Table 1: CKRM patches, new files and files changed.
Kernel
Patch

New Files Files Changed

00-core.ckrm-
E12.patch

kernel/ckrm/Makefile
kernel/ckrm/ckrm.c
kernel/ckrm/ckrmutils.c
include/linux/ckrm.h
include/linux/ckrm_ce.h
include/linux/ckrm_rc.h

include/linux/sched.h
init/Kconfig
init/main.c
kernel/Makefile
kernel/exit.c
kernel/fork.c
kernel/sys.c
fs/exec.c

01-rcfs.ckrm-
E12.patch

fs/rcfs/Makefile
include/linux/rcfs.h
fs/rcfs/dir.c
fs/rcfs/inode.c
fs/rcfs/magic.c
fs/rcfs/rootdir.c
fs/rcfs/super.c

fs/Makefile

02-taskclass.ckrm-
E12.patch.

include/linux/ckrm_tc.h
kernel/ckrm/ckrm_tc.c
fs/rcfs/tc_magic.c

none

03-numtasks.ckrm-
E12.patch

include/linux/ckrm_tsk.h
kernel/ckrm/ckrm_tasks.c none

04-
socketclass.ckrm-
E12.patch

include/linux/ckrm_net.h
kernel/ckrm/ckrm_sockc.c
fs/rcfs/socket_fs.c

none

05-socketaq.ckrm-
E12.patch kernel/ckrm/ckrm_listenaq.c

include/linux/tcp.h
include/net/sock.h
include/net/tcp.h
net/ipv4/Kconfig
net/ipv4/tcp.c
net/ipv4/tcp_ipv4.c
net/ipv4/
 tcp_minisocks.c
net/ipv4/tcp_timer.c

cpu.ckrm-
E13.patch

include/linux/ckrm_sched.h
include/linux/ckrm_cpu_class.h

include/linux/
 circularqueue.h
include/linux/sched.h
kernel/Makefile
kernel/circularqueue.c
kernel/sched.c
init/Kconfig

AOP promises an elegant, language level solution to this problem.
Instead of instrumenting mainline code with patches and line offsets,
an aspect would use a few simple language extensions to attach
hooks to principled points in the execution of the kernel. For
example, the following CKRM aspect would instrument the kernel
with: (1) a call to ckrm_cb_newtask() before the execution of f1(),
exposing the parameter arg to CKRM code, and (2) calls to
ckrm_cb_uid() after functions f2(), f3() or f4() respectively.

aspect CKRM { // modularizes CKRM hooks

 before(task_t* arg): execution(void f1(arg))
 {
 ckrm_cb_newtask(arg); //accesses parameter
 }

 after(): execution(void f2() || void f3() || void f4())
 {
 ckrm_cb_uid();
 }
 ...
}

The aspect thus structures the modifications to the mainline code,
which are “woven” automatically at buildtime (or, in recent AOP
approaches, at runtime). The interaction with the kernel becomes
explicit at the level of functions and parameters involved; hence,

code becomes more amenable to semantic analysis and developers
can reason about the interaction at a higher level. Related work has
shown the ways in which aspects reduce complexity of crosscutting
concerns [7, 6, 12].

3. CRITERIA FOR ADOPTION
For developers to buy-in to AOP as a viable solution to this problem
of managing variability in systems code, we must definitively answer
three critical questions:

(1) how will it better support reasoning about interactions?
(2) how will it impact mainline structure and evolution?
(3) how will it impact runtime and buildtime performance?

Clarity of Interactions: Since AOP would make interaction between
variants and a mainline kernel explicit at the level of the interfaces
and parameters involved, the ability to reason about these
interactions would be improved. The assumption here is that the
aspect-oriented implementation of the variants could better represent
the high level intent behind the hooks. That is, the principled ways
in which variants interact with the mainline code would become
clear. Tool support would be an added benefit, but ultimately, the
ability to view the woven code may arguably be more natural within
the minimal development environments typically available to system
programmers.

Mainline Structure and Evolution: In order to compose aspects with
mainline kernel code, existing mainline functions may have to be
refactored. Ensuring that this refactoring is reasonable and causes no
harm (performance or otherwise) is a necessary preliminary step
before AOP can be considered a viable solution in a systems context.

Runtime and Buildtime Performance: Compiler optimizations, such
as inlining, are an important part of code generation when AOP is
applied to systems code. Though an in-depth study would be
required before results are conclusive, we believe static AOP
mechanisms will be acceptable if inlined throughout the kernel,
whereas dynamic mechanisms (such as cflow) may have to be
avoided in certain contexts due to performance constraints.
Additionally, tighter integration with the compiler, including
compiler warnings associated with changes to mainline code that
could impact aspects, may ultimately enhance/replace tool support in
this context.

4. AN EXPERIMENT
We are designing an experiment to test AOP’s ability to meet this
criteria; specifically, to manage variants in Linux kernel design and
implementation. In the design portion of the experiment, we will
look at points of interaction for several kernel patches. The goal is to
trace upwards to some high level design criteria which would explain
the significance of their points of interaction.

Table 2: Linux patches of various sizes.

Patch New Files Modified #Line Adds(+) #Line Subs(-)
ALSA 200 540 324672 148419
LSM 123 85 40355 415
LTT 9 71 5546 17
LLA1 1 39 619 60

Preliminary results in Table 2 show the following coarse assessment
of four different patches of various sizes. Notice that there are two
types of additions: new files added, and modifications to existing

Low Latency Audio, http://www.linuxdj.com/audio/lad/resourceslatency.php3

files. We also show the number of line additions and removals for
each variant.

Further analysis of each patch will expose the points of interaction;
that is, where the line additions and removals are actually taking
place. If it is determined that these hooks lie at the boundaries of a
function, they can be woven into the mainline code with an aspect.
In the cases where the hooks are in the middle of functions, we will
have to determine exactly why they are there. That is, we have to
further establish if these hooks: (1) can be moved or (2) are preceded
simply by local data structure initialization and argument validity
checks or (3) may actually provide hints as to where otherwise
bloated kernel functions should be refactored, because they perform
more than one functional task. Ultimately, we expect that a clear
separation of concerns within the kernel will improve its long-term
scalability and ease of maintenance.

In the implementation portion of the experiment, we will assess the
available AOP prototypes, such as AspectC/C++ [2, 3]. Evaluation
will be based on the ability to support AOP within a systems context.
The runtime and buildtime performance of each prototype will be
measured; however, we do not believe these metrics to be of
paramount importance at this stage of adoption, because inadequate
performance in these areas can be improved with code optimizations
and re-engineering. If the available prototypes are not sufficient, we
may either work to improve their utility or consider redevelopment
with eXTensible C (xtc) [8].

5. DISCUSSION
Variability in open source projects introduces several software
engineering challenges – variants might break other devices in the
system or not follow existing conventions, and this code is hard to
analyze effectively once it is hidden after merges. A structural
separation of variants, engineered with aspects, would save kernel
programmers from having to compose and scatter more code across
the kernel to resolve such issues. Though assessment of Aspect-
Oriented Software Development (AOSD) [4] in general is still
arguably in its early days, we believe AOP is particularly well suited
to deliver the structural support necessary to manage variability in
large open source software projects such as Linux. Improved
management will accelerate advancement by clarifying variant
merges that are typically complex and time consuming. Using AOP,
the functionality and structure of a variant can be modularized, and
its principled interaction with the kernel exposed.

6. References
[1] Advanced Linux Sound Architecture, http://www.alsa-project.org/
[2] AspectC, http://www.cs.ubc.ca/labs/spl/projects/aspectc.html
[3] AspectC++, www. aspectC.org
[4] Aspect-Oriented Software Development, www.aosd.net.
[5] Class-based Kernel Resource Management, http://ckrm.sourceforge.net/
[6] Yvonne Coady, Gregor Kiczales, Mike Feeley and Greg Smolyn, Using

AspectC to Improve the Modularity of Path-Specific Customization in
Operating System Code. FSE-9, 2001.

[7] J. Gray, T. Bapty and S. Neema, “Aspectifying Constraints in Model
Integrated Computing”. In Proceedings of OOPSLA 1999.

[8] Robert Grimm, eXTensible C, (xtc) http://www.cs.nyu.edu/rgrimm/xtc/
[9] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Videira Lopes, Jean-Marc Loingtier and John Irwin, Aspect-Oriented
Programming, ECOOP, 1997.

[10] Linux Security Modules (LSM), http://lsm.immunix.org/
[11] Linux Trace Toolkit (LTT), http://www.opersys.com/LTT/
[12] Gail Murphy, Robert Walker, and Elisa Baniassad. Evaluating Emerging

Software Development Technologies: Lessons Learned from Evaluating
Aspect-oriented Programming. In IEEE Transactions on Software
Engineering 25, 4, 1999.

[13] Video4Linux, http://linux.bytesex.org/v4l2/

