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This position paper outlines challenges associated with managing OS 
variants, key ways in which AOP could help, and criteria for 
adoption that we believe AOP must meet. 

1. INTRODUCTION   
Major variants to a mainline Linux kernel are typically represented in 
terms of high level frameworks and low level patches.  Frameworks 
are typically vetted several times in the operating systems 
community before becoming mainlined into the kernel.  Patches that 
quietly sprinkle the necessary hooks for the framework throughout 
the existing system receive less attention.  Developers trying to 
manage variants manifested as patches are given no support when 
trying to understand the code.  
Frameworks that have recently been mainlined include Linux 
Security Modules (LSM) [10], Advanced Linux Sound Architecture 
(ALSA) [1], and Video4Linux [13].  There are many others possibly 
soon to be mainlined, such as Class-Based Kernel Resource 
Management (CKRM) [5] and Linux Trace Toolkit (LTT) [11].  
These are just a few of the many frameworks that resort to 
rudimentary patching schemes.   
Though aspect-oriented programming (AOP) [9, 4] is poised to help, 
criteria for its adoption must ensure smooth integration with current 
approaches and tools within a systems context.  To this end, we 
examine a concrete example, describe how AOP could help, establish 
criteria of adoption, and finally describe an experiment we plan to 
explore.    

2. EXAMPLE: CKRM 
Class-based Kernel Resource Management (CKRM) [5] project is 
developing new kernel mechanisms to provide differentiated service 
to shared system resources.  These resources include CPU, memory, 
I/O and network bandwidth.  At a low level, changes associated with 
this variant have been organized into several patches, as outlined in 
Table 1.  The table shows that some patches are self-contained, 
involving no changes to the existing code, whereas others change 
collections of files.   
In more detail, these patches dictate where “hunks” of code are 
applied, at specific line numbers or relative offsets within specific 
files, throughout the system.  For example, this portion of a CKRM 
patch (00-core.ckrm-E12.patch): 

@@ -619,6 +623,9 @@ 
  } 
  else 
   return -EPERM; 
+ 
+ ckrm_cb_gid(); 
+ 
  return 0; 
} 

instruments an existing file with a call to the ckrm_cb_gib() function.  
Line numbers are represented as relative offsets indicated by 
@@<line-info>@@.  Precisely which function is instrumented is 
not clear looking at the patch. But upon closer inspection some 
patterns are clear – all calls to ckrm_cb_gid()/uid() (6 in total) 
directly precede return statements, and ckrm_cb_exit()/newtask() are 
at the beginning and end of functions in exit/fork.c.  

Leveraging these clues to trace upwards to higher level design intent 
is impaired in this representation.  Developers are faced with 
minimal support for reasoning about interaction between the variant 
and the mainline kernel, prolonging the community consensus phase 
(roughly 2 years for LSM) for incorporating otherwise simple hooks.   
Moreover, as the mainline kernel evolves, the points during the 
execution of the kernel when the hooks should fire may also evolve.  
The problem is compounded as more variants are introduced, further 
bogging down the overall process of mainline decisions. 

Table 1:  CKRM patches, new files and files changed. 
Kernel 
Patch 

New Files Files Changed 

00-core.ckrm-
E12.patch 
 

kernel/ckrm/Makefile  
kernel/ckrm/ckrm.c  
kernel/ckrm/ckrmutils.c  
include/linux/ckrm.h  
include/linux/ckrm_ce.h  
include/linux/ckrm_rc.h  

include/linux/sched.h 
init/Kconfig 
init/main.c 
kernel/Makefile 
kernel/exit.c 
kernel/fork.c 
kernel/sys.c 
fs/exec.c 

01-rcfs.ckrm-
E12.patch 
 

fs/rcfs/Makefile  
include/linux/rcfs.h  
fs/rcfs/dir.c  
fs/rcfs/inode.c  
fs/rcfs/magic.c  
fs/rcfs/rootdir.c  
fs/rcfs/super.c  

fs/Makefile 

02-taskclass.ckrm-
E12.patch. 

include/linux/ckrm_tc.h 
kernel/ckrm/ckrm_tc.c 
fs/rcfs/tc_magic.c 

 
none 

03-numtasks.ckrm-
E12.patch 

include/linux/ckrm_tsk.h 
kernel/ckrm/ckrm_tasks.c none 

04-
socketclass.ckrm-
E12.patch 

include/linux/ckrm_net.h 
kernel/ckrm/ckrm_sockc.c 
fs/rcfs/socket_fs.c 

 
none 

05-socketaq.ckrm-
E12.patch kernel/ckrm/ckrm_listenaq.c 

include/linux/tcp.h 
include/net/sock.h 
include/net/tcp.h 
net/ipv4/Kconfig 
net/ipv4/tcp.c 
net/ipv4/tcp_ipv4.c 
net/ipv4/ 
  tcp_minisocks.c 
net/ipv4/tcp_timer.c 

cpu.ckrm-
E13.patch 

include/linux/ckrm_sched.h 
include/linux/ckrm_cpu_class.h 

include/linux/ 
  circularqueue.h 
include/linux/sched.h 
kernel/Makefile 
kernel/circularqueue.c 
kernel/sched.c 
init/Kconfig 

AOP promises an elegant, language level solution to this problem.  
Instead of instrumenting mainline code with patches and line offsets, 
an aspect would use a few simple language extensions to attach 
hooks to principled points in the execution of the kernel.  For 
example, the following CKRM aspect would instrument the kernel  
with: (1) a call to ckrm_cb_newtask() before the execution of f1(), 
exposing the parameter arg to CKRM code, and (2) calls to 
ckrm_cb_uid() after functions f2(), f3() or f4() respectively. 

aspect CKRM { // modularizes CKRM hooks 
 
   before(task_t* arg): execution(void f1(arg)) 
   { 
      ckrm_cb_newtask(arg);  //accesses parameter 
   } 

  after(): execution(void f2() || void f3() || void f4()) 
   { 
      ckrm_cb_uid();   
   }  
   ... 
} 

The aspect thus structures the modifications to the mainline code, 
which are “woven” automatically at buildtime (or, in recent AOP 
approaches, at runtime).  The interaction with the kernel becomes 
explicit at the level of functions and parameters involved; hence, 



code becomes more amenable to semantic analysis and developers 
can reason about the interaction at a higher level.  Related work has 
shown the ways in which aspects reduce complexity of crosscutting 
concerns [7, 6, 12]. 

3. CRITERIA FOR ADOPTION 
For developers to buy-in to AOP as a viable solution to this problem 
of managing variability in systems code, we must definitively answer 
three critical questions: 

(1) how will it better support reasoning about interactions?  
(2) how will it impact mainline structure and evolution? 
(3) how will it impact runtime and buildtime performance? 

Clarity of Interactions: Since AOP would make interaction between 
variants and a mainline kernel explicit at the level of the interfaces 
and parameters involved, the ability to reason about these 
interactions would be improved.   The assumption here is that the 
aspect-oriented implementation of the variants could better represent 
the high level intent behind the hooks.  That is, the principled ways 
in which variants interact with the mainline code would become 
clear.  Tool support would be an added benefit, but ultimately, the 
ability to view the woven code may arguably be more natural within 
the minimal development environments typically available to system 
programmers.   

Mainline Structure and Evolution: In order to compose aspects with 
mainline kernel code, existing mainline functions may have to be 
refactored.  Ensuring that this refactoring is reasonable and causes no 
harm (performance or otherwise) is a necessary preliminary step 
before AOP can be considered a viable solution in a systems context.  

Runtime and Buildtime Performance: Compiler optimizations, such 
as inlining, are an important part of code generation when AOP is 
applied to systems code.  Though an in-depth study would be 
required before results are conclusive, we believe static AOP 
mechanisms will be acceptable if inlined throughout the kernel, 
whereas dynamic mechanisms (such as cflow) may have to be 
avoided in certain contexts due to performance constraints. 
Additionally, tighter integration with the compiler, including 
compiler warnings associated with changes to mainline code that 
could impact aspects, may ultimately enhance/replace tool support in 
this context.   

4. AN EXPERIMENT 
We are designing an experiment to test AOP’s ability to meet this 
criteria; specifically, to manage variants in Linux kernel design and 
implementation.  In the design portion of the experiment, we will 
look at points of interaction for several kernel patches. The goal is to 
trace upwards to some high level design criteria which would explain 
the significance of their points of interaction.   

Table 2: Linux patches of various sizes. 

Patch New Files Modified #Line Adds(+) #Line Subs(-) 
ALSA 200 540 324672 148419 
LSM 123 85 40355 415 
LTT 9 71 5546 17 
LLA1 1 39 619 60 

 

Preliminary results in Table 2 show the following coarse assessment 
of four different patches of various sizes.  Notice that there are two 
types of additions: new files added, and modifications to existing 
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files.  We also show the number of line additions and removals for 
each variant. 

Further analysis of each patch will expose the points of interaction; 
that is, where the line additions and removals are actually taking 
place.  If it is determined that these hooks lie at the boundaries of a 
function, they can be woven into the mainline code with an aspect.  
In the cases where the hooks are in the middle of functions, we will 
have to determine exactly why they are there.  That is, we have to 
further establish if these hooks: (1) can be moved or (2) are preceded 
simply by local data structure initialization and argument validity 
checks or (3) may actually provide hints as to where otherwise 
bloated kernel functions should be refactored, because they perform 
more than one functional task.  Ultimately, we expect that a clear 
separation of concerns within the kernel will improve its long-term 
scalability and ease of maintenance.   

In the implementation portion of the experiment, we will assess the 
available AOP prototypes, such as AspectC/C++ [2, 3].   Evaluation 
will be based on the ability to support AOP within a systems context.  
The runtime and buildtime performance of each prototype will be 
measured; however, we do not believe these metrics to be of 
paramount importance at this stage of adoption, because inadequate 
performance in these areas can be improved with code optimizations 
and re-engineering. If the available prototypes are not sufficient, we 
may either work to improve their utility or consider redevelopment 
with eXTensible C (xtc) [8].      

5. DISCUSSION 
Variability in open source projects introduces several software 
engineering challenges – variants might break other devices in the 
system or not follow existing conventions, and this code is hard to 
analyze effectively once it is hidden after merges.  A structural 
separation of variants, engineered with aspects, would save kernel 
programmers from having to compose and scatter more code across 
the kernel to resolve such issues.  Though assessment of Aspect-
Oriented Software Development (AOSD) [4] in general is still 
arguably in its early days, we believe AOP is particularly well suited 
to deliver the structural support necessary to manage variability in 
large open source software projects such as Linux. Improved 
management will accelerate advancement by clarifying variant 
merges that are typically complex and time consuming.   Using AOP, 
the functionality and structure of a variant can be modularized, and 
its principled interaction with the kernel exposed.  
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