This page represents examples 69, 70, and 71 of Halstead's "Machine-Independent Computer Programming". Comments in italics, as well as the disassembly and Algol hand translation, have been added by MikeVanEmmerik.

  EXAMPLE 69.
  Address        ff  jkb  yyyyy           Address   ff  jkb  yyyyy
  10100          00  000  00000           10142     07  000  00036
  10101          00  000  00000           10143     03  000  00036
  10102          00  000  00000           10144     23  030  10106
  10103          00  000  00000           10145     14  030  10107
  10104          00  000  00000           10146     61  010  10131
  10105          00  000  00000           10147     10  030  10103
  10106          00  000  00000           10150     26  030  10100
  10107          00  000  00000           10151     22  030  10106
  10110          00  000  00000           10152     14  030  10107
  10111          00  000  00000           10153     10  030  10100
  10112          00  000  00000           10154     27  630  10103
  10113          00  000  00000           I0155     65  000  10113
  10114          10  030  10103           10156     11  030  10100
  10115          35  030  10100           10157     10  030  10106
  10116          61  010  10113           10160     27  000  00001
  10117          00  000  00000           10161     04  430  10103
  10120          10  000  00005           10162     61  000  10165
  10121          26  030  10100           10163     65  000  10117
  10122          27  730  10106           10164     61  000  10166
  10123          61  000  10126           10165     65  000  10131
  10124          65  000  10113           10166     61  000  10167
  10125          61  000  10130           10167     12  100  00000
  10126          10  030  10103           10170     10  000  00170
  10127          34  030  10100           10171     40  031  10103
  10130          61  010  10117           10172     07  000  00073
  10131          00  000  00000           10173     41  031  10100
  10132          10  030  10106           10174     07  000  00072
  10133          26  030  10103           10175     14  031  10107
  10134          07  000  00036           10176     71  100  00003
  10135          03  000  00036           10177     61  000  10170
  10136          23  030  10106           10200     10  030  10103
  10137          26  030  10107           10201     14  030  10106
  10140          22  030  10100           10202     61  400  10000
  10141          26  030  10103

The above is obviously quite hard to read. Here is my attempt at disassembling it:

10100 AB:     .word   0,0,0
10103 AA:     .word   0,0,0
10106 AC:     .word   0
10107 AD:     .word   0,0,0
10112         .word   0
10113 SUB_B:  .word   0            ; Space for return address
10114         ld      q,AA
10115         sub_st  q,AB         ; Subtract and store
10116         jmp     *SUBC        ; Jump indirect on return address
10117 SUB_A:  .word   0
10120         ld      q,#5
10121         add     q,AB
10122         sub     <,q,AC       ; Subtract and skip next instruction
                                   ; if result < 0
10123         jmp     ENT_D
10124         call    SUB_B
10125         jmp     SUB_A        ; Call SUB_A then return
10126 ENT_D:  ld      q,AA
10127         add_st  q,AB         ; Add and store
10130 ENT_C:  jmp     *SUB_A       ; return from SUB_A
10131 SUB_C:  .word   0
10132         ld      q,AC
10133         add     q,AA
; Note: registers on the Univac M460 are 30 bits
10134         shl     aq,#30       ; shift left the a and q registers
10135         shr     aq,#30       ; shift right aq
10136         div     AC
10137         add     q,AD
10140         mul     AB
10141         add     q,AA
10142         shl     aq,#30
10143         shr     aq,#30
10144         div     AC
10145         st      q,AD
10146         jmp     *SUBC         ; return

10147 START:  ld      q,AA          ; note no return address storage
10150         add     q,AB
10151         mul     AC
10152         st      q,AD
10153         ld      q,AB
10154         sub     >=,q,AA       ; subtract, skip if result >= 0
10155         call    SUB_B
10156         ld      a,AB
10157         ld      q,AC
10160         sub     q,#1
10161         cmp     aq,AA         ; skip if a < OP <= q
10162         jmp     ENT_E
10163         call    SUB_A
10164         jmp     ENT_A
10165 ENT_E:  call    SUB_C
10166 ENT_A:  jmp     ENT_B
10167 ENT_B:  ld      b,#0           ; don't know why j=1
10170 @1:     ld      q,#120
10171         ld      aq,AA(b)       ; "enter logical product"
10172         shl     aq,#59
10173         add     aq,AB(b)
10174         shl     aq,#58
10175         st      q,AD(b)
10176         cmp     =,b,#2         ; compare b with 2 and skip if equal?
10177         jmp     @1
10200         ld      q,AA
10201         st      q,AC
10202         halt

The program of Example 69 was then accepted by the Decompiler of Appendix D, which found all of the absolute addresses used as nouns or verbs, and assigned arbitrary names to them. The program logic itself was then decoded into the equivalent Neliac statements, as shown in Example 70.

ex70_1.jpg

Again, I find the above difficult to read. Here is my translation to Algol, which Neliac is supposed to be a dialect of, using the procedure of Halstead's book, page 22:

Comments This is MikeVanEmmerik's hand translation to Algol of Example 70
in "Machine-Independent Computer Programming".

integer procedure START();
integer A STORE, Q STORE, AA(3), AB(3), AC, AD(4);
begin
    AD := (AA + AB) * AC;
    if AB - AA >= 0 ;
    else SUB B();
    A STORE := AB;
    Q STORE := AC-1;
    if Q STORE >= AA and if A STORE < AA;
    else goto ENT_E;
    SUB A();
    goto ENT_A;
ENT E:
    SUB C();
ENT A:
    goto ENT B;
ENT B:
    i := 0;
    for i := i step 1 until 2 do
        begin AD[i] := AA[i](3..6) + AB[i](2..5) end
    AC := AA;
end..

integer procedure SUB C();
begin
    AD := (((AC + AA)/AC+AD)*AB+AA)/AC;
end

integer procedure SUB B();
begin
    AB := AB - AA;
end

integer procedure SUB A();
begin
    if 5 + AB - AC < 0;
    else goto ENT D;
    SUB B();
    goto ENT_C;
ENT D:
    AB := AB + AA;
ENT C:
end

As you can see, there are no parameters to worry about (most code seems to use global variables). The semantics of the skip instructions are obvious, with the blank if clause always followed by an else clause. I don't know the semantics for bit selection in Algol, if it has any. No attempt has been made to structure the gotos in the program. However, a for loop has been recovered, complete with indexes and bit ranges.

In addition to producing the Neliac version solely from the machine-coded version of the program, the decompiler also pro- duced a listing of the various names which it assigned, as shown in Example 71.

  EXAMPLE 71.
  SUB A 0 10117
    ENT A 0 10166
    ENT B 0 10167
    SUB B 0 10113
    ENT C 0 10130
    ENT D 0 10126
    ENT E 0 10165
    SUB C 0 10131
    START 0 10147
  AA 3 10103
  AB 3 10100
  AC 3 10106
  AD 3 10107
where an initial zero denotes a verb and a 3 indicates a noun.

It may be noted that in a case of this kind there is no inherent meaning in the names assigned to nouns or verbs, except perhaps to the first and last of the verbs. If the original documentation has been adequate, so that the comments accompanying the original program has been sufficiently informative to allow a person to provide meaningful names for given addresses, the decompiler will accept and use them.

CategoryDecompilation

Revision: r1.1 - 23 Aug 2004 - 04:00 - MikeVanEmmerik
Copyright © 1999-2020 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback