
Type-Driven Gradual
Security Typing
Matías Toro, Ronald Garcia, Éric Tanter

1

Scenario

2

let age : Int = 31
let salary : Int = 58000
let intToString : Int ! String = ...
let print : String ! Unit = ...
print(intToString(salary))

Disney and Flanagan. “Gradual Information Flow Typing”

Scenario

3

let age : Int = 31
let salary : Int = 58000
let intToString : Int ! String = ...
let print : String ! Unit = ...
print(intToString(salary))

Low Security
Data

Scenario

4

let age : Int = 31
let salary : Int = 58000
let intToString : Int ! String = ...
let print : String ! Unit = ...
print(intToString(salary))

Low Security
Data High Security

Data

Scenario

5

let age : Int = 31
let salary : Int = 58000
let intToString : Int ! String = ...
let print : String ! Unit = ...
print(intToString(salary))

Low Security
Data High Security

Data

Low Security
Channel

Scenario

6

let age : Int = 31
let salary : Int = 58000
let intToString : Int ! String = ...
let print : String ! Unit = ...
print(intToString(salary))

Low Security
Data High Security

Data

Low Security
Channel

Security Leak!! Unchecked Semantic Error

More Types!

7

� ` ~

Information-Flow
Security Typing

�!

�!sec

8

9

Operating R.S. Gaines
Systems Editor

A Lattice Model of
Secure Information
Flow
Dorothy E. Denning
Purdue University

This paper investigates mechanisms that guarantee
secure information flow in a computer system. These
mechanisms are examined within a mathematical
framework suitable for formulating the requirements
of secure information flow among security classes.
The central component of the model is a lattice
structure derived from the security classes and justified
by the semantics of information flow. The lattice
properties permit concise formulations of the security
requirements of different existing systems and facilitate
the construction of mechanisms that enforce security.
The model provides a unifying view of all systems
that restrict information flow, enables a classification
of them according to security objectives, and suggests
some new approaches. It also leads to the construction
of automatic program certification mechanisms for
verifying the secure flow of information through a
program.

Key Words and Phrases: protection, security,
information flow, security class, lattice, program
certification

CR Categories: 4.35

1. Introduction

The security mechanisms of most computer systems
make no at tempt to guarantee secure information flow.
"Secure information flow," or simply "security,"
means here that no unauthorized flow of information is
possible. In the common example of a government or
military system, security requires that processes be
unable to transfer data from files of higher security
classifications to files (or users) of lower ones: not only
must a user be prevented from directly reading a file
whose security classification exceeds his own, but he
must be inhibited from indirectly accessing such in-
formation by collaborating in arbitrarily ingenious
ways with other users who have authority to access the
information [19].

Most access control mechanisms are designed to
control immediate access to objects without taking
into account information flow paths implied by a
given, outstanding collection of access rights. Con-
temporary access control mechanisms, such as are
found in Multics [18, 20] or Hydra [24], have demon-
strated their abilities to enforce the isolation of processes
essential to the success of a multitask system. These
systems rely primarily on assumptions of "trustworthi-
ness" of processes for secure information flow among
cooperating processes. Though it is mainly of theoretical
interest, Harr ison et al. [12] have recently demonstrated
that in general it may be undecidable whether an
access right to an object will " leak" to a process in a
system whose access control mechanism is modeled
by an access matrix [11, 15].

In our research into this problem, we sought to find
suitable and viable restrictions according to which the
security of a system would not only be decidable, but
simply so. Our results show that suitable constraints do
indeed exist, and moreover within the context of a
richly structured model.

Copyright @ 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted, provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

A version of this paper was presented at the Fifth ACM Sym-
posium on Operating Systems Principles, The University of Texas
at Austin, November 19-21, 1975.

Work reported herein was supported in part by the National
Science Foundation under grants GJ-43176 and GJ-41289 and by
IBM under a fellowship. Author's present address: Computer
Sciences Department, Purdue University, West Lafayette, IN
47907.

236

2. The Model

2.1 Description
An information flow model FM is defined by

F m = (N, P, SC, e , ~).
N = {a, b , . . . } is a set of logical storage objects or
information receptacles. Elements of N may be files,
segments, or even program variables, depending on the
level of detail under consideration. Each user of the
system may also be regarded as an object. P =
{p, q , . . . } is a set of processes. Processes are the active
agents responsible for all information flow.

Communications May 1976
of Volume 19
the ACM Number 5

[CACM 1976]

Security as a Lattice

10

�����������

������� �����

��

�����������

�����������

������

��� ������

Zdancewic. “Programming Languages for Information Security”

Classification Permitted Readers
`1 4 `2

Security as a Lattice

11

�����������

������� �����

��

�����������

�����������

������

��� ������

Zdancewic. “Programming Languages for Information Security”

Low-security information may flow
to high-security contexts

Security as a Lattice

12

�����������

������� �����

��

�����������

�����������

������

��� ������

Zdancewic. “Programming Languages for Information Security”

High-security information may not flow
to low-security contexts

Security Typing

13

Int �! Int

Simple Types

Security Typing

14

IntH �!L IntH

Security-Indexed Types

�

�

�

�

Higher Security

Lower Security

Security Typing

15

Natural Subtyping Structure

IntL <: IntH

IntH �!L IntL <: IntL �!H IntH

�

�

�

�

Higher Security

Lower Security

Back to Scenario

16

let age : Int = 31
let salary : Int = 58000
let intToString : Int ! String = ...
let print : String ! Unit = ...
print(intToString(salary))

Simple Typing
Silent Leak

Scenario

17

let age : IntL = 31L
let salary : IntH = 58000H
let intToString : IntL !L StringL = ...
let print : StringL !L UnitL = ...
print(intToString(salary))

Type Error!

Security Typing

More Subtleties

18

�����������

������� �����

��

�����������

�����������

������

��� ������

Zdancewic. “Programming Languages for Information Security”

High-security information may not flow
to low-security contexts

More Subtleties

19

�����������

������� �����

��

�����������

�����������

������

��� ������

Zdancewic. “Programming Languages for Information Security”

High-security information may not flow
to low-security contexts

Implicit Information Flows

20

fun b : BoolH =>
 let tt : BoolL = true
 let ff : BoolL = false
 if b then tt else ff

High-Security data can affect control flow of a program

Implicit Information Flows

21

fun b : BoolH =>
 let tt : BoolL = true
 let ff : BoolL = false
 if b then tt else ff

What’s it’s
Type?

High-Security data can affect control flow of a program

Implicit Information Flows

22

fun b : BoolH =>
 let tt : BoolL = true
 let ff : BoolL = false
 if b then tt else ff

What’s it’s
Type?

Where is it
safe to use?

High-Security data can affect control flow of a program

Assignment Can Leak Info!

23

let r : BoolL ref = ref tt
fun b : BoolH =>
 if b then ()L else (r := ff; ()L)

High-Security information can escape
 via mutable state

What’s it’s
Type?

Where is it
safe to use?

Assignment Can Leak Info!

24

let r : BoolL ref = ref tt
fun b : BoolH =>
 if b then ()L else (r := ff; ()L)

High-Security information can escape
 via mutable state

Security Typing Judgment

25

�;⌃; ` ` t : T

Security Typing Judgment

26

How Can My Local Variables Behave?

�;⌃; ` ` t : T

Security Typing Judgment

27

How Can Mutable References Behave?

How Can My Local Variables Behave?

�;⌃; ` ` t : T

What Security Information can
leak through Assignment

Security Typing Judgment

28

How Can Mutable References Behave?

How Can My Local Variables Behave?

�;⌃; ` ` t : T

Security Typing Judgment

29

How Does t Behave?

�;⌃; ` ` t : T

Carpal Typing Syndrome

30

let age : IntL = 31L
let salary : IntH = 58000H
let intToString : IntL !L StringL = ...
let print : StringL !L UnitL = ...
print(intToString(salary))

Type Error!

Security Typing

Secure All the Things!

31

let age : IntL = 31L
let salary : IntH = 58000H
let intToString : IntL !L StringL = ...
let print : StringL !L UnitL = ...
print(intToString(salary))

Type Error!

Security Typing

32

Gradual Typing

Dynamic
Typing

Simple
Typing

Gradual Typing!

33

Simple
Typing

Security
Typing

Security

Disney and Flanagan. “Gradual Information Flow Typing”

Gradual Typing!

34

Simple
Typing

Security
Typing

Security

Fennell and Thiemann, Gradual Security Typing with References

Simple Typing

35

let age : Int = 31
let salary : Int = 58000
let intToString : Int ! String = ...
let print : String ! Unit = ...
print(intToString(salary))

“Gradually Secure” Program

36

let age : Int = 31
let salary : IntH = 58000
let intToString : Int ! String = ...
let print : StringL ! Unit = ...
print(intToString(salary))

Runtime Error!

High Security
Data

Low Security
Channel

“Gradually Secure” Program

37

let age : Int = 31
let salary : IntH = 58000
let intToString : IntL ! String = ...
let print : StringL ! Unit = ...
print(intToString(salary))

Type Error!

“Gradually Secure” Program

38

let age : Int = 31
let salary : IntH = 58000
let intToString : IntL ! String = ...
let print : StringL ! Unit = ...
print(intToString(age))

All G
ood!

What do types tell us?

39

let mix : IntL -> IntH -> IntL =
 fun pub priv =>
 ...

Local Reasoning Principles???

What do types tell us?

40

Take 1: Upper-bounds on security tags

Disney and Flanagan. “Gradual Information Flow Typing”

Weak security guarantee

Proof Technique: Wright-Felleisen Type Safety

let mix : IntL -> IntH -> IntL =
 fun pub priv =>
 ...

Fennell and Thiemann, Gradual Security Typing with References

Constrains any individual run of the code

What do types tell us?

41

Take 2: Non-interference

Strong security guarantee
Proof Technique: Logical relations

let mix : IntL -> IntH -> IntL =
 fun pub priv =>
 ...

Modular, compositional, static reasoning about security
Heintze and Riecke. The Slam Calculus: Programming with Secrecy and Integrity

Constrains relationship among runs of the code

What do types tell us?

42

Take 2: Non-interference

Strong security guarantee
Proof Technique: Logical relations

let mix : IntL -> IntH -> IntL =
 fun pub priv =>
 ...

Modular, compositional, static reasoning about security
Heintze and Riecke. The Slam Calculus: Programming with Secrecy and Integrity

Constrains relationship among runs of the code
https://popl18.sigplan.org/event/popl-2018-papers-keynote-milner-lecture

https://popl18.sigplan.org/event/popl-2018-papers-keynote-milner-lecture

What do types tell us?

43

Take 2: Non-interference
MISSION: achieve this richer meaning

let mix : IntL -> IntH -> IntL =
 fun pub priv =>
 ...

Modular, compositional, gradual reasoning about security

Strong security guarantee

Gradual Security

44

` 2 Label

Unknown
Label

g 2 GLabel ::= ` | ?
Label ✓ GLabel

“Gradually Secure” Program

45

let age : Int = 31
let salary : IntH = 58000
let intToString : IntL ! String = ...
let print : StringL ! Unit = ...
print(intToString(age))

“Gradually Secure” Program

46

let age : Int? = 31?
let salary : IntH = 58000?
let intToString : IntL !? String? = ...
let print : StringL !? Unit? = ...
print(intToString(age))

Gradual Language Embeds
Simply Typed and Security Typed Languages

Desugared

Gradual Label Precision

47

�

�

� � �

g1 v g2

Label Ordering

48

�

�

�

�

Higher Security

Lower Security

`1 4 `2

Consistent
Label Ordering

49

g1 e4 g2
v v
`1 4 `2
for some `1, `2

Consistent Ordering

50

Conservatively Extends
Label Ordering

L e4 H

H 6e4 L

L e4 L

? e4 L

L e4 ?

Consistent “Ordering”

51

Not really an order

L e4 H

H 6e4 L

L e4 L

? e4 L

L e4 ?

Gradual Types

52

U 2 GType Just add
gradual labels!

BoolL
IntH

Bool?

Type ✓ GType

Gradual Types

53

Type Precision U1 v U2
Covariant on

function types!

Int? !? Bool?

IntL !? Bool? Int? !? BoolH

Int? !? Bool?

IntL !? BoolH

IntL !? Bool? Int? !? BoolH

Gradual Types

54

Consistent
Subtyping

U1 . U2

Conservatively
extends subtyping

(but not really a
subtyping relation)

v

for some T1, T2

if and only if v
T1 <: T2

Consistent Subtyping

Conservatively Extends
Subtyping

IntL . IntH

IntL 6. BoolH

IntH 6. IntL

IntH . Int?

Int? . IntL

Int? 6. BoolH

55

Consistent Subtyping
IntL . IntH

IntL 6. BoolH

IntH 6. IntL

IntH . Int?

Int? . IntL

Int? 6. BoolH

56

Not

Transitive!

Consistent Subtyping
IntL . IntH

IntL 6. BoolH

IntH 6. IntL

IntH . Int?

Int? . IntL

Int? 6. BoolH

57

Not

Transitive!

Does NOT denote
safe substitutibility

Consistent Subtyping
IntL . IntH

IntL 6. BoolH

IntH 6. IntL

IntH . Int?

Int? . IntL

Int? 6. BoolH

58

Not a Subtyping
Relation!

Not

Transitive!

Does NOT denote
safe substitutibility

Lifting Typing Rules

59

�;⌃; `
c

` t1 : T11
`

0
!

`

x

T12 �;⌃; `
c

` t2 : T2

T2 <: T11 `
c � `x 4 `0

�;⌃; `
c

` t1 t2 : T12 � `x

�;⌃; g
c

` et1 : U11
g0!g

x

U12 �;⌃; g
c

` et2 : U2

U2 . U11 ^g
c � gx 4 g0

�;⌃; g
c

` et1 et2 : U12 e� gx

Dynamic Semantics:
Runtime Type Safety Argument

60

t 7�! t0

D D0=)

Garcia et al. Abstracting Gradual Typing (POPL 2016)

` t : T ` t0 : TSome extra
complications

Noninterference (roughly)

61

Syntactic Type Judgment

Semantic Type Judgment

�;⌃; g ` t : U =) �;⌃; g |= t : U

Semantic Type Soundness

Theses
• Types let you reason about program fragments

• Type Systems are not their Type Checkers

• Type Systems are for reasoning

• Type Checkers are for enforcement

• Dynamic Checks are for enforcement too!

62

Conclusion
• Gradual typing is relative: not just for “scripting”

• Gradual typing conservatively extends two
related languages

• Syntax

• Dynamic Semantics

• Semantics of types

63

64

Image Credits

• “see no evil…” by ucumari (flickr)

• “concentration” by cdell (flickr)

• “Can you say ‘SAWHEEET’?” by locomotion
(flickr)

65

