
The Beauty and the Beast

collaboration with F. Zappa Nardelli, A. Pelenitsyn J. Belyakova, B. Chung

Don’t
build

a
language,

grow
it

Fortress Programming Language Tutorial, PLDI, 11 June 2006

32© 2006 Sun Microsystems, Inc. All rights reserved.

Simple Example: NAS CG Kernel (Unicode)
conjGrad
Elt extends Number, nat N,

Mat extends Matrix
Elt,N×N�,
Vec extends Vector
Elt,N�
�(A: Mat, x: Vec): (Vec, Elt) = do

cgit_max = 25
z: Vec = 0
r: Vec = x
p: Vec = r
ρ: Elt = r^T r
for j ← seq(1:cgit_max) do

q = A p
α = ρ / p^T q
z := z + α p
r := r - α q
ρ₀ = ρ

ρ := r^T r
β = ρ / ρ₀

p := r + β p
end
(z, ‖x - A z‖)

end

This would be considered entirely
equivalent to the previous
version. You might think of this as
an abbreviated form of the ASCII
version, or you might think of the
ASCII version as a way to
conveniently enter this version on
a standard keyboard.

Allen, Hilburn, Kilpatrick, Luchangco, Ryu, Chase, Steele: Type checking modular multiple
dispatch with parametric polymorphism and multiple inheritance. OOPSLA11

Fortress

Type Checking Modular Multiple Dispatch with Parametric

Polymorphism and Multiple Inheritance

Eric Allen
Oracle Labs

eric.allen@oracle.com

Justin Hilburn
Oracle Labs

justin.hilburn@oracle.com

Scott Kilpatrick
University of Texas

at Austin
scottk@cs.utexas.edu

Victor Luchangco
Oracle Labs

victor.luchangco@oracle.com

Sukyoung Ryu
KAIST

sryu.cs@kaist.ac.kr

David Chase
Oracle Labs

david.r.chase@oracle.com

Guy L. Steele Jr.
Oracle Labs

guy.steele@oracle.com

Abstract

In previous work, we presented rules for defining overloaded
functions that ensure type safety under symmetric multiple
dispatch in an object-oriented language with multiple inher-
itance, and we showed how to check these rules without
requiring the entire type hierarchy to be known, thus sup-
porting modularity and extensibility. In this work, we extend
these rules to a language that supports parametric polymor-
phism on both classes and functions.

In a multiple-inheritance language in which any type may
be extended by types in other modules, some overloaded
functions that might seem valid are correctly rejected by our
rules. We explain how these functions can be permitted in
a language that additionally supports an exclusion relation
among types, allowing programmers to declare “nominal
exclusions” and also implicitly imposing exclusion among
different instances of each polymorphic type. We give rules
for computing the exclusion relation, deriving many type
exclusions from declared and implicit ones.

We also show how to check our rules for ensuring the
safety of overloaded functions. In particular, we reduce the
problem of handling parametric polymorphism to one of
determining subtyping relationships among universal and
existential types. Our system has been implemented as part
of the open-source Fortress compiler.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features—classes
and objects, inheritance, modules, packages, polymorphism

General Terms Languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA ’11 October 22–27, 2011, Portland, Oregon, USA.
Copyright c� 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

Keywords object-oriented programming, multiple dispatch,
symmetric dispatch, multiple inheritance, overloading, mod-
ularity, methods, multimethods, static types, run-time types,
ilks, components, separate compilation, Fortress, meet rule

1. Introduction

A key feature of object-oriented languages is dynamic dis-

patch: there may be multiple definitions of a function (or
method) with the same name—we say the function is over-

loaded—and a call to a function of that name is resolved at
run time based on the “run-time types”—we use the term
ilks—of the arguments, using the most specific definition
that is applicable to arguments having those particular ilks.
With single dispatch, a particular argument is designated as
the receiver, and the call is resolved only with respect to that
argument. With multiple dispatch, the ilks of all arguments
to a call are used to resolve the call. Symmetric multiple dis-

patch is a special case of multiple dispatch in which all ar-
guments are considered equally when resolving a call.

Multiple dispatch provides a level of expressivity that
closely models standard mathematical notation. In particu-
lar, mathematical operators such as + and  and [and es-
pecially · and ⇥ have different definitions depending on the
“types” (or even the number) of their operands; in a language
with multiple dispatch, it is natural to define these operators
as overloaded functions. Similarly, many operations on col-
lections such as append and zip have different definitions
depending on the ilks of two or more arguments.

In an object-oriented language with symmetric multiple
dispatch, some restrictions must be placed on overloaded
function definitions to guarantee type safety. For example,
consider the following overloaded function definitions:

f(a: Object, b: Z): Z = 1

f(a: Z, b: Object): Z = 2

To which of these definitions ought we dispatch when f is
called with two arguments of ilk Z ? (We assume that Z is
a subtype of Object , written Z <: Object .)f(Z,Z)?

Allen, Hilburn, Kilpatrick, Luchangco, Ryu, Chase, Steele: Type checking modular multiple
dispatch with parametric polymorphism and multiple inheritance. OOPSLA11

Fortress

Type Checking Modular Multiple Dispatch with Parametric

Polymorphism and Multiple Inheritance

Eric Allen
Oracle Labs

eric.allen@oracle.com

Justin Hilburn
Oracle Labs

justin.hilburn@oracle.com

Scott Kilpatrick
University of Texas

at Austin
scottk@cs.utexas.edu

Victor Luchangco
Oracle Labs

victor.luchangco@oracle.com

Sukyoung Ryu
KAIST

sryu.cs@kaist.ac.kr

David Chase
Oracle Labs

david.r.chase@oracle.com

Guy L. Steele Jr.
Oracle Labs

guy.steele@oracle.com

Abstract

In previous work, we presented rules for defining overloaded
functions that ensure type safety under symmetric multiple
dispatch in an object-oriented language with multiple inher-
itance, and we showed how to check these rules without
requiring the entire type hierarchy to be known, thus sup-
porting modularity and extensibility. In this work, we extend
these rules to a language that supports parametric polymor-
phism on both classes and functions.

In a multiple-inheritance language in which any type may
be extended by types in other modules, some overloaded
functions that might seem valid are correctly rejected by our
rules. We explain how these functions can be permitted in
a language that additionally supports an exclusion relation
among types, allowing programmers to declare “nominal
exclusions” and also implicitly imposing exclusion among
different instances of each polymorphic type. We give rules
for computing the exclusion relation, deriving many type
exclusions from declared and implicit ones.

We also show how to check our rules for ensuring the
safety of overloaded functions. In particular, we reduce the
problem of handling parametric polymorphism to one of
determining subtyping relationships among universal and
existential types. Our system has been implemented as part
of the open-source Fortress compiler.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features—classes
and objects, inheritance, modules, packages, polymorphism

General Terms Languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA ’11 October 22–27, 2011, Portland, Oregon, USA.
Copyright c� 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

Keywords object-oriented programming, multiple dispatch,
symmetric dispatch, multiple inheritance, overloading, mod-
ularity, methods, multimethods, static types, run-time types,
ilks, components, separate compilation, Fortress, meet rule

1. Introduction

A key feature of object-oriented languages is dynamic dis-

patch: there may be multiple definitions of a function (or
method) with the same name—we say the function is over-

loaded—and a call to a function of that name is resolved at
run time based on the “run-time types”—we use the term
ilks—of the arguments, using the most specific definition
that is applicable to arguments having those particular ilks.
With single dispatch, a particular argument is designated as
the receiver, and the call is resolved only with respect to that
argument. With multiple dispatch, the ilks of all arguments
to a call are used to resolve the call. Symmetric multiple dis-

patch is a special case of multiple dispatch in which all ar-
guments are considered equally when resolving a call.

Multiple dispatch provides a level of expressivity that
closely models standard mathematical notation. In particu-
lar, mathematical operators such as + and  and [and es-
pecially · and ⇥ have different definitions depending on the
“types” (or even the number) of their operands; in a language
with multiple dispatch, it is natural to define these operators
as overloaded functions. Similarly, many operations on col-
lections such as append and zip have different definitions
depending on the ilks of two or more arguments.

In an object-oriented language with symmetric multiple
dispatch, some restrictions must be placed on overloaded
function definitions to guarantee type safety. For example,
consider the following overloaded function definitions:

f(a: Object, b: Z): Z = 1

f(a: Z, b: Object): Z = 2

To which of these definitions ought we dispatch when f is
called with two arguments of ilk Z ? (We assume that Z is
a subtype of Object , written Z <: Object .)f(Z,Z)?

Castagna et al. [4] address this problem in the context of
a type system without parametric polymorphism or multiple
inheritance by requiring every pair of overloaded function
definitions to satisfy the following properties: (i) whenever
the domain type1 of one is a subtype of the domain type
of the other, the return type of the first must also be a
subtype of the return type of the second; and (ii) whenever
the domain types of the two definitions have a common
lower bound (i.e., a common nontrivial2 subtype), there is
a unique definition for the same function whose domain
type is the greatest lower bound of the domain types of
the two definitions. Thus, to satisfy the latter property for
the example above, the programmer must provide a third
definition, such as:

f(a: Z, b: Z): Z = 3

We call this latter property the Meet Rule because it is
equivalent to requiring that the definitions for each over-
loaded function form a meet semilattice partially ordered by
the subtype relation on their domain types, which we call the
more specific than relation.3 The Meet Rule guarantees that
there are no ambiguous function calls at run time.

We call the first property above the Return Type Rule (or
Subtype Rule). It ensures type preservation when a function
call is resolved at run time (based on the ilks of the argument
values) to a different (and more specific) definition than the
most specific one that could be determined at compile time
(based on the types of the argument expressions).

In this paper, we give new Meet and Return Type Rules
that ensure safe overloaded functions in a language that sup-
ports symmetric multiple dispatch, multiple inheritance, and
parametric polymorphism for both types and functions (i.e.,
generic types and generic functions), as does the Fortress
language we are developing [1]. We prove that these rules
guarantee type safety. This extends previous work [2] in
which we gave analogous rules, and proved the analogous
result, for a core of Fortress that does not support generics.

To handle parametric polymorphism, it is helpful to have
an intuitive interpretation for generic types and functions.
One way to think about a generic type such as ListJT K (a list
with elements of type T —type parameter lists in Fortress
are delimited by white square brackets) is that it represents
an infinite set of ground types: ListJObjectK (lists of ob-
jects), ListJStringK (lists of strings), ListJZK (lists of inte-
gers), and so on. An actual type checker must have rules for
working with uninstantiated (non-ground) generic types, but
for many purposes this model of “an infinite set of ground

1 The “domain type” of a function definition is the type of its parameter.
Hereafter we consider every function to have a single parameter; the ap-
pearance of multiple parameters denotes a single tuple parameter.
2 A type is a nontrivial subtype of another type if it is not the trivial “bottom”
type defined in the next section.
3 Despite its name, this relation, like the subtype relation, is reflexive: two
function definitions with the same domain type are each more specific than
the other. In that case, we say the definitions are equally specific.

types” is adequate for explanatory purposes. Not so, how-
ever, for generic functions.

For some time during the development of Fortress, we
considered an interpretation of generic functions analogous
to the one above for generic types; that is, the generic func-
tion definition:4

tailJXK
`
x: ListJXK

´
: ListJXK = e

should be understood as if it denoted an infinite set of
monomorphic definitions:

tail
`
x: ListJObjectK

´
: ListJObjectK = e

tail
`
x: ListJStringK

´
: ListJStringK = e

tail
`
x: ListJZK

´
: ListJZK = e

. . .

The intuition was that for any specific function call, the usual
rule for dispatch would then choose the appropriate most
specific definition for this (infinitely) overloaded function.

Although that intuition worked well enough for a sin-
gle polymorphic function definition, it failed utterly when
we considered multiple function definitions. For example, a
programmer might want to provide definitions for specific
monomorphic special cases, as in:

tailJXK
`
x: ListJXK

´
: ListJXK = e1

tail
`
x: ListJZK

´
: ListJZK = e3

If the interpretation above is taken seriously, this would be
equivalent to:

tail
`
x: ListJObjectK

´
: ListJObjectK = e1

tail
`
x: ListJStringK

´
: ListJStringK = e1

tail
`
x: ListJZK

´
: ListJZK = e1

. . .

tail
`
x: ListJZK

´
: ListJZK = e3

which is ambiguous for calls in which the argument is of
type ListJZK .

It gets worse if the programmer wishes to handle an
infinite set of cases specially. It would seem natural to write:

tailJXK
`
x: ListJXK

´
: ListJXK = e1

tailJX <: NumberK
`
x: ListJXK

´
: ListJXK = e2

to handle specially all cases where X is a subtype of
Number . But the model would regard this as an overloaded
function with an infinite number of ambiguities.

It does not suffice to “break ties” by choosing the instan-
tiation of the more specific generic definition. Consider the
following overloaded definitions:

quuxJXK(x: X): Z = 1

quux (x: Z): Z = 2

Intuitively, we might expect that the call quux (x) evaluates
to 2 whenever the ilk of x is a subtype of Z , and to 1

4 The first pair of white square brackets delimits the type parameter decla-
rations, but the other pairs of white brackets provide the type arguments to
the generic type List .

Fortress

…a dynamic language for high-performance scientific computing

…open source since its inception by Jeff Bezanson circa 2012

is…

Dynamic yes yes
Vectorized yes yes

Memory management automatic automatic
Implementation interpreted native

Type declarations — user-defined generic types

Meta-programming substitute() macros
Parameter passing by promise by value

is…

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Julia: Dynamism and Performance Reconciled by Design

ANONYMOUS AUTHOR(S)

Julia is a programming language for the scienti�c community that combines features of productivity languages,
such as Python or MATLAB, with characteristics of performance-oriented languages, such as C++ or Fortran.
Julia has many productivity features: dynamic typing, automatic memory management, rich type annotations,
and multiple dispatch. At the same time, it lets programmers control memory layout and uses a specializing
just-in-time compiler that eliminates some of the overhead of those features. This paper details these choices,
and re�ects on their implications for performance and usability.

1 INTRODUCTION
Scienti�c programming has traditionally adopted one of two programming language families:
productivity languages, o�ering easy development, and performance languages, o�ering speed.
Thanks to features like dynamic typing and garbage collection, productivity languages (Python,
MATLAB, R) make development simple. Scienti�c programs often begin their lives in a productivity
language, thanks to ease of use and comfortable semantics. When the problem becomes too big
for this �rst implementation, programmers turn to performance languages (C, C++, Fortran) for
speed and e�ciency. However, this takes much more programmer e�ort, requiring manual memory
management and using static typing; so rewriting programs becomes a challenging task.

Scientists have been trying to bridge this divide. The ROOT data processing framework [Antcheva
et al. 2015] serves as one example. Confronted with petabytes of data, the high energy physics
community spent more than 20 years developing an extension to C++ that provides interpretive
execution and re�ection—typical features of productivity languages. Most �elds, however, do not
have such resources to build and maintain their own infrastructure.
The Julia programming language aims to decrease the distance between productivity and per-

formance languages. On one hand, it provides productivity features like dynamic typing, garbage
collection, and multiple dispatch. On the other, it has a type-specializing just-in-time compiler and
lets programmers control memory layout. Julia, therefore, o�ers scienti�c programmers the ease of
a productivity language at speeds close to performance languages.⌥ ⌅

mutable struct Node
val
nxt

end

function insert(list, elem)
if list isa Void

return Node(elem, nothing)
elseif list.val > elem

return Node(elem, list)
end
list.nxt = insert(list.nxt, elem)
list

end⌃ ⇧
Fig. 1. Linked list

Fig. 1 presents an example of untyped Julia code. Node is a
datatype containing two �elds, val and nxt. The insert func-
tion takes a sorted list and an element and performs an ordered
insertion in the list. This function also uses the less than op-
erator, which can be overloaded for use with any user-de�ned
type. While Julia allows programmers to write code in this
style, it is far from idiomatic Julia. Should it be integrated into
a program, this code would not be e�cient.
Like any language, Julia expects programmers to write id-

iomatic code; and when they do, they are rewarded with sur-
prising e�ciency. Our paper explores how Julia leverages its
design to achieve high performance—performance that is es-
pecially notable considering that Julia is a young language
with a small development team.

The key to Julia’s performance lies in the design of the language and the way programmers
use it. Julia is built around the notion of symmetric multiple dispatch [Bobrow et al. 1986], which

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

0

25

50

75

100

bi
na
ry
_t
re
es

fa
nn
ku
ch

fa
st
a

m
an
de
lb
ro
t

nb
od
y

pi
di
gi
ts

re
ge
x

re
vc
om

p

sp
ec
tra
ln
or
m

lang
C
Julia
PythonPython
Julia

C

is…
…surprisingly fast

is…

Questions?
Why is Julia fast?

Why did Fortress fail?
How expressive is Julia?

How is Julia used in practice?
How does Multiple Dispatch work?

Does Julia support Gradual Typing?
Why so many types in Julia programs?

