A Programming Model and
Foundation for Lineage-Based
Distributed Computation

Heather Miller

EPFL & Northeastern University

Heather Miller

EPFL & Northeastern University

WG 2.16 Language Design - Park City 2017

#1 functions for the network

#2 implicits in Scala

Heather Miller

EPFL & Northeastern University

Functions & Streaming

Recall the discussion surrounding Tom's
example of XStream'’s transform method from

yesterday.

Functions & Streaming

Recall the discussion surrounding Tom's
example of XStream'’s transform method from

yesterday.

poor reconstruction from memory:

function transform(f: (t:T)=U, ctx: {}):Stream<U> {

}

Functions & Streaming

Recall the discussion surrounding Tom's
example of XStream'’s transform method from

yesterday.

poor reconstruction from memory:

function transform(f: (t:T)=U, ctx: {}):Stream<U> {

}

free variables go here

Functions & Streaming

Recall the discussion surrounding Tom's
example of XStream'’s transform method from

yesterday.

observation:

- Embedding DSLs like XStream in a host language
gets you all kinds of goodies like tooling, a type
system you don't have to design yourself, etc.

- But you lose control in other areas; e.g., pure
functions lost. Now we just have to deal with
| errors that may come from users not explicitly
passing free variables as the ctx parameter.

Functions & Streaming

Recall the discussion surrounding Tom's
example of XStream'’s transform method from

yesterday.

question.
Manuel asked something along the lines of:

“Would 1t be possible to introduce a new
abstraction for functions that would
ameliorate some of these issues?”

Or at least we made one attempt so
far in the context of Scala/the JVM.

My work has been in the context
of Spark.

e,
owrs

Chunk up the data.

N

Chunk up the data...

machines.

Distribute it over
your cluster of

machines.

Distribute it over
your cluster of

From there, think of your distributed
data like a single collection...

val wiki: RDD[WikiArticle] = ...

wiki

From there, think of your distributed
data like a single collection...

val wiki: RDD[WikiArticle] = ... Example:
Transform the text (not titles)

ZI ZI ZI ZI of all wiki articles to lowercase.
wiki.map { article =>
article.text.toLowerCase

wiki

RECAP:
Some of the issues with sending

closures over the network:
(in the context of Java/Scala)

RECAP:
Some of the issues with sending

closures over the network:
(in the context of Java/Scala)

Transitive object graphs.

RECAP:
Some of the issues with sending

closures over the network:
(in the context of Java/Scala)

Transitive object graphs.

L. transitive references that inadvertently hold on to
excessively large object graphs creating memory
leaks

RECAP:
Some of the issues with sending

closures over the network:
(in the context of Java/Scala)

Transitive object graphs.

1. transitive references that inadvertently hold on to
excessively large object graphs creating memory
leaks

2. Capturing references to mutable objects, leading
to race conditions in a concurrent setting.

RECAP:
Some of the issues with sending

closures over the network:
(in the context of Java/Scala)

Transitive object graphs.

1. transitive references that inadvertently hold on to
excessively large object graphs creating memory

leaks

2. Capturing references to mutable objects, leading
to race conditions in a concurrent setting.

3. Unknowingly accessing object member that are
not constant such as methods, which in a
distributed setting can have logically different
meanings on different machines.

Going back to this example....

val wiki: RDD[WikiArticle] = ...

wiki

Going back to this example....

val wiki: RDD[WikiArticle] = ... Example:
Transform the text (not titles)

ZI ZI :I ZI of all wiki articles to lowercase.
wiki.map { article =>
article.text.toLowerCase

wiki

Souter /Souter apping

@ala.oolleclion.SeqLikeﬂSS@ class Visualize3$$an@

Souter mS1

@ﬂa-mlleclion.immu[able S$colon$colon class scala.collection.immutable. Map$SMap2

value2

valuel

ead ralue ralue

@la.eolleclion immutable Nil$

RECAP:
Some of the issues with sending

closures over the network:
(in the context of Java/Scala)

Serializability.

1. Accidental capture of non-serializable variables.

2. Compiler-specific translation schemes that
create implicit references to objects that are not
serializable

RECAP:
Some of the issues with sending

closures over the network:
(in the context of FP)

sendFunc :: SendPort (Int — Int) — Int — ProcessM ()

sendFunc p x = sendChan p (\y - x +vy + 1)

Serializing arbitrary lambdas not obvious even in
FP languages.

How do we look up a pickler for x7

Spark example

class MyCoolRddApp {
val log = new Log(...)

def shift(p: Int): Int = ...

def work(rdd: RDD[Int]) {

rdd.map(x = x + shift(x))
.reduce(...)

Spark example

Fails with an
exception at
runtime!

class MyCoolRddApp {
val log = new Log(...)

def shift(p: Int): Int = ...

def work(rdd: RDD[Int]) {
rdd.map(x = x + shift(x))
.reduce(...)

Spark example

class MyCoolRddApp {
val log = new Log(...)

def shift(p: Int): Int = ...

def work(rdd: RDD[Int]) {
rdd.map(x = x + shift(x))
.reduce(...)

Fails with an
exception at
runtime!

X => X + shift(x)
not serializable
because it
captures this of
type
MyCoolRddApp

which is itself not
serializable

Akka example

def receive = {
case Request(data) =
future {
val result = transform(data)
sender ! Response(result)

}

}

Akka example

: No exception.
def receive = { But ti
case Request(data) = ut sometimes

future { !ogically
val result = transform(data) iIncorrect.

sender ! Response(result)

}

}

Akka example

: No exception.
def receive = { But ti
case Request(data) = ut sometimes

future { logically

val result = transform(data) incorrect.
sender ! Response(result)

}

}

Akka actor
spawns a future
to concurrently
process
Incoming reqs

Akka example

def receive = {
case Request(data) =
future {

val result = transform(data)
sender ! Response(result)

}

}

Akka actor Not a stable
spawns a future yjlue! It's a

to concurrently method call!
process

iIncoming reqs

No exception.
But sometimes
logically
Incorrect.

Akka example

def receive = {

case Request(data) =
future {

val result = transform(data)
sender ! Response(result)

}

}

Akka actor Not a stable
spawns a future yjlue! It's a

to concurrently method call!
process

iIncoming reqgs

No exception.
But sometimes
logically
incorrect.

Result: Response
IS sometimes sent
where it's not
expected.

Our version of safe functions:

Spores

What are they?

== A closure-like abstraction
= A type system

Spores

What are they?

== A closure-like abstraction
= A type system

Goal:

Well-behaved closures with controlled
environments that can avoid various
hazards.

Spores
This is achieved hy:

(a)enforcing a specific syntactic shape
which dictates how the environment of
a spore iIs declared.

(b)providing additional type checking to
ensure that types being captured have
certain properties.

Spores
This is achieved by:

(a)ef_orcin_g a specific syntactic shape
ala =k Falel=v=
t of

(9] spores encode extra type
information corresponding to the y to

captured environment
in their type.

Spores

Basic usage (long-form):

val s = spore {
val h = helper
(x: Int) = {

val result = x + " " + h.toString
println("The result is: " + result)

}
}

The body of a spore consists of 2 parts:
#1 a sequence of local value (val) declarations only
(the “spore header™), and

#2 a closure

Spores

Basic usage (long-form):

val ¢ — cnnvra I

val h = helper

(X: Int) = 1
val result = x + " " + h.toString
println("The result is: " + result)

a closure

Spores

Basic usage (long-form):

val s = spore {
val h = helper
(x: Int) = {

val result = x + " " + h.toString
println("The result is: " + result)

)
I

The body of a spore consists of 2 parts:
#1 a sequence of local value (val) declarations only

Spores
Basic usage (long-form):

val s = spore {
val h = helpner
(x: Int) = {
val result = x + " " + h.toString
println("The result is: " + result)

)
I

Syntactic rule: free variables of

The body of a spore the closure body must be either:

#1 a sequence of loce
WML (2) parameters of the closure or

(b)defined in the spore header

|

Spores and Closures

Evaluation semantics

The semantics of a spore is equivalent to the
closure that is the result of removing the spore
marker

Spores and Closures

Evaluation semantics

ARy val s = spore {
closu val h = helper

(x: Int) => {
mark val result = x + " " + h.toString

println("The result is: " + result)

}
¥

val s = {
val h = helper
(x: Int) => {

val result = x + " " + h.toString
println("The result is: " + result)

}

}

Spores and Closures

Evaluation semantics

The semantics of a spore is equivalent to the
closure that is the result of removing the spore
marker

Coercions: from closure to spore

Function literals can be implicitly turned into a
spore If the function literal satisfies the spore rules

A spore guarantees...
(vs a closure)

All captured variables are declared in
the spore header

The initializers of captured variables
are executed once, upon creation of
the spore

References to captured variables do
not change during the spore’s execution

That gets you...

Since...

—=> Captured expressions are evaluated
upon spore creation.

That means...

—_> Spores are like function values with an
iImmutable environment.

—==>» Plus, environment is specified and
checked, no accidental capturing.

That gets you... israphicalty)

1
Right after
creation

2
During

execution

Spores closures

That gets you... israphicalty)

1
Right after
creation

2
During

execution

Spores closures

That gets you... (graphically)

1
Right after
creation

2
During

execution

closures

That gets you... (graphically)

1
Right after
creation

2
During

execution

closures

Formalization

Central idea:
Spore types are refinements of function types.

1T'=T function type

Su=T=T{typeC=T; pn} spore type
| T = T {typeC; pn} abstract spore type

Spore types include more information than
function types:

Formalization

Central idea:
Spore types are refinements of function types.

function type

spore type
abstract spore type

Spore types include more information than
function types:

captured types

Formalization

Central idea:
Spore types are refinements of function types.

1T'=T function type

S:=T=T{typeC = (; on t) spore type
| T = T {typeC; pn } abstract spore type

Spore types include more information than
function types:

captured types and properties

Formalization

Central idea: Properties: a property coulg

YIRS S Igeg ©<Press: “each captured type
Must have a Pickler type class

INstance.”
T ="1T

S:=T=T{typeC = (; on t) spore type
| T = T {typeC; pn } abstract spore type

Spore types include more information than
function types:

captured types and properties

Spores with Constraints

Idea:
» Keep track of types of captured variables
 Allow restricting captured types

Spores with Constraints

Idea:
» Keep track of types of captured variables
 Allow restricting captured types

Example:
An APl may prevent argument spores from
capturing variables of type Socket:

Spores with Constraints

Idea:
» Keep track of types of captured variables
 Allow restricting captured types

Example:
An APl may prevent argument spores from
capturing variables of type Socket:

type SafeSpore[-T, +R] = Spore[T, R] {

type Excluded <: No[Socket]
}

def sendOverWire(s: SafeSpore[Int, Int]): Unit = ...

Formalization

To express excluded types, we use an additional
type member

T'=1T function type

Su=T=T{typeC=T; typeézT; pn } spore type
T =T {typeC; typeE=T; pn } abstract spore type

Formalization

To express excluded types, we use an additional
type member

T'=1T function type

Su=T=T{typeC=TE T)pn 1 spore type
| T = T { type C ; type ' abstract spore type

Formalization

SPORE COMPOSITION PRESERVES TYPE
CONSTRAINTS
Sound composition of constraints: avoid

calculating constraints that are not guaranteed
to hold at runtime

..In the paper:

Soundness proof based on a small-step operational
semantics and progress+preservat|on

Correspondence to the Scala implementation

Using Spores in APlIs

InAPls

If you want parameters to be spores, then
you can write it this way

def sendOverWire(s: Spore[Int, Int]): Unit = ...

sendOverWire((x: Int) = x * x - 2)

How are they serializable?
They're not. Yet.

Properties

IDEA:
allow expressing a type-based property that

must be satisfied by all captured variables upon
creation of a spore.

EXAMPLE: ENSURE THE FOLLOWING SPORE IS

GEER

fun = spore {

p: = ...
luckyNum:

() =>s
¥

Properties

IDEA:
allow expressing a type-based property that

To serialize a spore, it's necessary that for all captured
variables of type T, there is an implicit pickler of type

Pickler[T] in scope.

Properties

IDEA:
allow expressing a type-based property that

To serialize a spore, it's necessary that for all captured
variables of type T, there is an implicit pickler of type
Pickler[T] in scope.

pickler[T] CAN BE ASUCHA

PROPERTY

Properties

WHAT ARE THEY?
= Properties are defined using a type Property| T}

= |Jse a property by importing it.
== \\'hen importing a property of type
Property[Prop] all spores in scope are

guaranteed to satisfy the property or not
compile

(= all captured types have property Prop)

Properties

WHAT ARE THEY?
= Properties are defined using a type Property| T}

= |Jse a property by importing it.
== \\'hen importing a property of type

so, in the case of pickling, Just: (has to have type

)

import
exists

and the framework ensures that a
for every captured type T.

Properties
Not limited to pickling.

CAN HAVE ARBITRARY PROPERTIES.
...plugs in nicely with other pluggable type

systems.

EXAMPLE: DEEP IMMUTABILITY
Integrate with a deep immutability checker like
OIGJ (Zibin et al. 2010)

Properties
Not limited to pickling.

IDEA:
Automatically generate type class instances for

all types that satisfy a transitive predicate, using
macros.

[T: l: [T]

which returns a type class instance for all types of
the shape C[O, Immut] that's deeply immutable
(analyzing the TypeTag).

Properties
Not limited to pickling.

IDEA:

To enforce transitive immutability for a spore, it's then

sufficient to define an implicit of type

Property[Immutable].

which returns a type class instance for all

types of
the shape C[O, Immut] that's deeply immut);%le
(analyzing the TypeTag).

Mini Empirical Study #1

How much effort is required to convert existing
programs that crucially rely on closures to
spores?

Program LOC #closures #converted LOC changed #captured vars

funsets } MOOC
forcomp 201

mandelbrot 325

barneshut 722

spark pagerank 64 Soark
spark kmeans 92 pat

Total 1503

} Parallel Collections

For each closure, we had to change 1.4L0C
on average, or only 45/1503 LOC

Mini Empirical Study #2

How widespread are patterns that can be
statically enforced by spores?

average LOC average # of %o closures that
Project per closure captured vars don’t capture

sameeragarwal/blinkdb

*268 233 LOC22,022
freeman-lab/thunder
*89 M2 Loc?2.813
bigdatagenomics/adam

*86 &M16 Loc 19,055

ooyala/spark-jobserver
*x79 6 LOCS5.578
Sotera/correlation-approximation

*12 2 Loc775

aecc/stream-tree-learning
*1 2 Loc1,199
lagerspetz/TimeSeriesSpark

*5 A1 Loc 14,882
Total LOC 66,324 2.25 : 67.2%

1.39 1 93.5%

1.03 : 23.3%

1.90 : 80.2%

1.60 80.0%

4.55 : 63.6%

5.73 54.5%

2.85 : 75.0%

Mini Empirical Study #2

How widespread are patterns that can be
statically enforced by spores?

67 2% of all closures can be qutomatically Qonverted.
The remaining 32.8% capture only 1.39 variables on

average.

Thus, unchecked patterns are widespread in real
applications, and require only little overhead to

enable spore quarantees.

sotera/correlation-approximation

*12 2 Loc775

aecc/stream-tree-learning
*1 2 Loc1,199
lagerspetz/TimeSeriesSpark

*5 A1 Loc 14,882
Total LOC 66,324 2.25

4.55

5.73

2.85

Implicit, what?

Question:

How widespread are
implicits in the Scala
ecosystem?

Question:

How widespread are
implicits in the Scala
ecosystem?

Different kinds:

= |Implicit parameters/val (configuration)
- Typeclasses
- Coercions

Implicits are popular.
...more than we thought.

Implicits are popular.
...more than we thought.

We analyzed the most
popular Scala projects
on GitHub ¢)

120

31,135

I < 1,977 %
3.7 million

Project Stars

apache/spark 13365 laurilehmijoki/s3_website 1800 filodb/FiloDB 876
apache/incubator-predictionio 10267 lampepfl/dotty 1759 pathikrit/better-files 874
playframework/playframework 9495 spark-jobserver/spark-jobserver 1653 japgolly/scalajs-react 874
scala/scala 8478 apache/incubator-openwhisk 1641 tpolecat/doobie 868
shadowsocks/shadowsocks-android 7969 twitter/finatra 1605 kamon-io/Kamon 859
akka/akka 7305 twitter/algebird 1527 vkostyukov/scalacaster 850
gitbucket/gitbucket 6424 mesos/spark 1462 sbt/sbt-native-packager 844
twitter/finagle 5799 GravityLabs/goose 1427 functional-streams-for-scala/fs2 839
lhartikk/ArnoldC 4992 lagom/lagom 1414 lihaoyi/Metascala 829
airbnb/aerosolve 3961 Netflix/atlas 1406 scala/pickling 816
yahoo/kafka-manager 3816 lihaoyi/Ammonite 1319 sryza/aas 814
mesos/chronos 3750 PkmX/Ilcamera 1284 eligosource/eventsourced 811
twitter/snowflake 3513 twitter/iago 1243 monix/monix 809
snowplow/snowplow 3432 rickynils/scalacheck 1231 akka/reactive-kafka 800
mesosphere/marathon 3333 datastax/spark-cassandra-connector 1222 sryza/spark-timeseries 799
ornicar/lila 3250 jaliss/securesocial 1211 scala/async 796
rtyley/bfg-repo-cleaner 3235 guardian/grid 1197 lihaoyi/scala.rx 791
fpinscala/fpinscala 3189 ensime/ensime-server 1193 julien-truffaut/Monocle 789
scalaz/scalaz 3139 non/spire 1192 http4s/http4s 787
sbt/sbt 3115 Iw-lin/CoolplaySpark 1186 twitter/ostrich 782
twitter-archive/flockdb 3112 foundweekends/giter8 1158 sangria-graphgl/sangria 778
gatling/gatling 3049 lift/framework 1090 jrudolph/sbt-dependency-graph 768
scala-js/scala-js 3012 mpeltonen/sbt-idea 1085 scalikejdbc/scalikejdbc 765
scala-native/scala-native 2885 finagle/finch 1065 databricks/spark-csv 764
twitter/diffy 2858 scala-exercises/scala-exercises 1051 twitter/twitter-server 734
twitter/scalding 2839 quantifind/KafkaOffsetMonitor 1048 ReactiveMongo/ReactiveMongo 718
twitter-archive/kestrel 2780 mauricio/postgresql-async 1041 adamw/macwire 711
spray/spray 2523 killrweather/killrweather 1018 playframework/play-slick 706
linkerd/linkerd 2315 ThoughtWorksInc/Binding.scala 994 jdegoes/blueeyes 702
scalatra/scalatra 2188 tumblr/colossus 989 nscala-time/nscala-time 696

Table 1. Top 120 open source Scala projects on GitHub, by star count.

Implicits are popular.
...more than we thought.

How many projects What sorts of implicits
make use of implicits? do projects use?

94.17% ‘ 44.22%

some kind implicit implicit
of implicits defs parameters

.83%
d05n’t8u§e 30.39%

implicits implicit vals

How much of each code
base uses implicits?

24%

Questions?

