
My Foray Into
Declarative Languages

...and what I learned about language design

Yannis SmaragdakisYannis Smaragdakis
University of Athens

“Declarative”?

“denoting high-level programming languages

which can be used to solve problems without

requiring the programmer to specify an exact

procedure to be followed.”

� high-level

� what, not how

� no control-flow, no side-effects

� specifications, not algorithms

2Yannis Smaragdakis
University of Athens

What Am I Doing in This
Space?

� Before 2008: nearly nothing

� mixin layers, generics and meta-programming,
domain-specific languages, virtual memory,
caching algorithms, FC++, automatic caching algorithms, FC++, automatic
partitioning, middleware semantics, automatic
testing, symbolic execution, …

� Very little to do with declarative languages

� barring minor consulting for LogicBlox Inc.

3Yannis Smaragdakis
University of Athens

Since Then…

� Doop: declarative static analysis (for Java and
now C/C++)

� DeAL: logic-based language for computation over
heap structures during GC timeheap structures during GC time

� PQL: declarative, fully parallelizable language
over a Java heap

� Academic liaison for LogicBlox

� Lots of other research expressed declaratively

� also domain-specific work

4Yannis Smaragdakis
University of Athens

Sample of Declarative Data PointsSample of Declarative Data Points

5Yannis Smaragdakis
University of Athens

DeAL[OOPSLA’10]

� First-order language for heap computations

� full connectives, no quantifier nesting, R predicates
(reachable)

� disjointness assertion

� Guarantee: all programs executable within a single
traversal of the heap, side-effect of GC!

� Example: all objects in ‘HttpSession’ are serializable,
none are threads

6Yannis Smaragdakis
University of Athens

forall Object x: R(HttpSession)[x] ->
(x instanceof Serializable) &&
!(x instanceof Thread)

PQL[ECOOP’12, CC’15]

� Unrestricted first-order logic over the Java heap

� Guarantee: automatically parallelizable

� Example: set intersection with filtering

Set<Item> intersection =

� Order of evaluation?

7Yannis Smaragdakis
University of Athens

Set<Item> intersection =
query (Set.contains(Item e)):

s0.contains(e) && s1.contains(e)
&& !e.is_dead;

LogicBlox

� Company developing Datalog(-uesque) platform

� language, optimizer (think: JIT), DB

� all applications developed declaratively (even UI)

� Datalog: first-order logic + recursion

� expressiveness-wise: superset of all prior

� captures PTIME complexity, Turing-complete with
simple extensions

� declarative: order of rules or clauses irrelevant (!Prolog)

� LogicBlox recently sold for ~$150M

� most value in applications: majority of top retailers
worldwide have deployed LogicBlox apps

8Yannis Smaragdakis
University of Athens

Static Analysis in Datalog
[OOPSLA’09, PLDI’10, POPL’11, OOPSLA’13, PLDI’13, PLDI’14, SAS’16, …]

� Datalog-based analysis frameworks for Java, C, C++

� 2-3K logical rules (20-25KLoC)

� Very high performance (often 10x over prior work)

� Sophisticated, very rich set of analyses� Sophisticated, very rich set of analyses
� subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-sensitivity,

call-site sensitive, object sensitive, thread sensitive, context-sensitive heap, abstraction, type
filtering, precise exception analysis

� High completeness: full semantic complexity of Java
� jvm initialization, reflection analysis, threads, reference queues, native methods, class

initialization, finalization, cast checking, assignment compatibility

9

http://doop.program-analysis.org

Yannis Smaragdakis
University of Athens

Back To Our Group Back To Our Group
(Language Design) …

10Yannis Smaragdakis
University of Athens

Quotes From
“Blue. No! Yellow!”

� “[W]e've passed the point of diminishing returns. No

future language will give us the factor of 10 advantage

that assembler gave us over binary. No future language

will give us 50%, or 20%, or even 10% reduction in

workload”workload”

� Question 1: can we get large productivity
increases?

� Also “assembler over binary”???
Sorry, I don’t buy it.

11Yannis Smaragdakis
University of Athens

Quotes From
“Blue. No! Yellow!”

� “it is difficult to see past the rut that we seem to be in

today. … research takes 10/20 years to hit practice”

� Question 2: are there designs that offer large
productivity gains now?

� “all programming languages seem very similar to each

other. They all have variables, and arrays, a few loop

constructs, functions, and some arithmetic constructs.

Sure, some languages have fancier features like first-class

functions or coroutines…”

� Question 3: are there useful languages that have no
loop constructs, no arrays, and no functions?

12Yannis Smaragdakis
University of Athens

Anecdote IAnecdote I
Based on
“Sound Predictive Race Detection in Polynomial Time”
[POPL’12]

13Yannis Smaragdakis
University of Athens

Happens-Before (HB)

� Lamport’s happens-before relation: a very common
concept in distributed systems

� HB: 3-part relation (partial order):

� all events by the same thread are HB-ordered (in the
order observed)

� a release of a lock happens-before subsequent
acquisitions of the same lock

� HB is transitively closed
14Yannis Smaragdakis

University of Athens

Happens-Before
Implementation

� Imagine you have the primitive blocks:

� tables with ordered events, maps from event to its
thread, to its type, to the lock it accesses, etc.

� How long would it take you to implement HB?

� all events by the same thread are HB-ordered (in the
order observed)

� a release of a lock happens-before subsequent
acquisitions of the same lock

� HB is transitively closed

15Yannis Smaragdakis
University of Athens

Happens-Before Datalog
Implementation

HB(e1,e2) <-
e1<e2, Thread[e1] = Thread[e2].

HB(e1,e2) <-
UnlockEvent(e1,l), LockEvent(e2,l), e1<e2.

HB(e1,e2) <- HB(e1,e3), HB(e3,e2).

� all events by the same thread are HB-ordered (in the
order observed)

� a release of a lock happens-before subsequent
acquisitions of the same lock

� HB is transitively closed

� How long would it take you to write that after a year of
Datalog practice?

16Yannis Smaragdakis
University of Athens

HB(e1,e2) <- HB(e1,e3), HB(e3,e2).

I know, I know…

� Lots of possible objections:

� Amdahl’s law / diminishing returns: what’s the
different when you add in all the scaffolding?

� This is not yet a well-performing Datalog � This is not yet a well-performing Datalog
implementation

� The problem happens to be a particularly good fit

� etc.

� But still…

17Yannis Smaragdakis
University of Athens

Causally-Precedes (CP)

� CP: another 3-part relation

� a release of a lock causally-precedes a subsequent
acquisition (of same lock) if the two critical sections
contain conflicting events

a release of a lock causally-precedes a subsequent � a release of a lock causally-precedes a subsequent
acquisition if the two critical sections contain CP-
ordered events

� (necessary for soundness in >2 threads)

� CP is closed under left- and right-composition with HB
(CP ◦ HB = HB ◦ CP = CP)

18Yannis Smaragdakis
University of Athens

Experience With CP

� For 2-3 weeks before the POPL’12 deadline,
3 Ph.D. students were trying to implement CP
efficiently (i.e., well-enough to get numbers)

� since 2012, two of them highly successful at Google� since 2012, two of them highly successful at Google

� They failed

� I did the CP implementation we used for the
paper’s benchmarks in 1 day in Datalog

� efficient enough and good enough for our purposes
by design: “Sound Predictive Race Detection in

Polynomial Time”
19Yannis Smaragdakis

University of Athens

Anecdote IIAnecdote II
Experience with Doop

20Yannis Smaragdakis
University of Athens

Doop, 7 years ago

� Martin Bravenboer created the first version of
the framework in under 12 months (Feb-Dec’08)

� About ¼ its current size (~6KLoC), single dev

until the summer of 2009, I (or anyone other than � until the summer of 2009, I (or anyone other than
Martin) had not written a single line of Doop

� Already comparable to existing points-to
analysis frameworks for Java bytecode

� e.g., IBM Wala, by a team of several
(back then)

21Yannis Smaragdakis
University of Athens

Doop, 7 years ago

� Doop could (at birth) fully replicate the results
of the Paddle framework

� Ph.D. work of a very competent programmer
(Ondrej Lhotak)(Ondrej Lhotak)

� Yet was ~10x faster!

� How much of a productivity boost is that?

� What were the drivers? We’ll get back to that

22Yannis Smaragdakis
University of Athens

Revisiting the 3 QuestionsRevisiting the 3 Questions

23Yannis Smaragdakis
University of Athens

The Three Questions

� Question 1: can we get large productivity
increases?

� Question 2: are there designs that offer large
productivity gains now?productivity gains now?

� Question 3: are there useful languages that
have no loop constructs, no arrays, and no
functions?

� I think you know my answers

24Yannis Smaragdakis
University of Athens

What Can We Learn From
This?

� Declarative languages are probably just one
part of the productivity answer

� Can we take a step back?

Speculative, subjective “lessons”� Speculative, subjective “lessons”

25Yannis Smaragdakis
University of Athens

Lesson: Productivity and Lesson: Productivity and
Performance Tied Together

26Yannis Smaragdakis
University of Athens

Lesson: Productivity and
Performance Tied Together

� If a language can give orders-of-magnitude

improvements in productivity

THEN

its implementation has the potential for its implementation has the potential for

orders-of-magnitude improvements in

performance

� both are aspects of being abstract

� how is it possible to get productivity improvements
if one needs to specify data and algorithms
concretely, with “loops and arrays”?

27Yannis Smaragdakis
University of Athens

Lesson: Productivity and
Performance Tied Together

� Abstract languages can change the
asymptotic complexity of a program

� E.g., in Datalog:

� order of joins

� indexing

� incrementalization

28Yannis Smaragdakis
University of Athens

A(x,y) <- A(y,z), B(z,x,w), C(w,y).
C(x,y) <- A(y,w), D(w,x).

Lesson: Productivity and
Performance Tied Together

� Order of joins: A<-A,B,C possibly catastrophic

� Is A<-A,C,B better? Probably

� What if no C index on y?

29Yannis Smaragdakis
University of Athens

A(x,y) <- A(y,z), B(z,x,w), C(w,y).
C(x,y) <- A(y,w), D(w,x).

Lesson: Productivity and
Performance Tied Together

� Joining tables is one kind of looping, recursion
is the other

A(x,y) <- A(y,z), B(z,x,w), C(w,y).
C(x,y) <- A(y,w), D(w,x).

� implemented as:

� Would you do this by hand? Main source of
inefficiencies in Paddle, handwritten analysis

30Yannis Smaragdakis
University of Athens

C(x,y) <- A(y,w), D(w,x).

∆A(x,y) <- ∆A(y,z), B(z,x,w), C(w,y).
∆A(x,y) <- A(y,z), B(z,x,w), ∆C(w,y).
∆C(x,y) <- ∆A(y,w), D(w,x).

Lesson: Need For Firm Mental Lesson: Need For Firm Mental
Ground

31Yannis Smaragdakis
University of Athens

Lesson: Need For Firm Mental
Ground

� If a language can give orders-of-magnitude

improvements in productivity

THEN

it will make it too easy to break things. The it will make it too easy to break things. The

language design should naturally keep sanity

32Yannis Smaragdakis
University of Athens

Lesson: Need for Firm Mental
Ground

� In Datalog development, the #1 sanity-
keeping feature is monotonicity

� Extra rules can only produce more results

Everything that used to hold, still does � Everything that used to hold, still does

� though not entirely true, close enough

� Also, termination: programs will converge

� though not entirely true, close enough

33Yannis Smaragdakis
University of Athens

Lesson: Development Patterns Lesson: Development Patterns
Change

34Yannis Smaragdakis
University of Athens

Lesson: Development Patterns
Change

� If a language can give orders-of-magnitude

improvements in productivity

THEN

a programmer’s workflow will change fairly a programmer’s workflow will change fairly

radically

35Yannis Smaragdakis
University of Athens

Lesson: Development Patterns
Change

� My Datalog experience

� much easier to pick up code after a while

� much easier to develop incrementally

� debugging not trivial

� goes with performance improvement: lots of
intermediate results missed

� more time running than writing code

36Yannis Smaragdakis
University of Athens

Conclusions: Conclusions:
Revisiting the 3 Questions

37Yannis Smaragdakis
University of Athens

The Three Questions

� Question 1: can we get large productivity
increases?

� Question 2: are there designs that offer large
productivity gains now?productivity gains now?

� Question 3: are there useful languages that
have no loop constructs, no arrays, and no
functions?

� I will claim “yes” on all three

38Yannis Smaragdakis
University of Athens

More Importantly

� We expect this story (productivity, different
design) from domain-specific languages

� What’s the common domain of

race detection� race detection

� points-to analysis

� retail prediction applications?

39Yannis Smaragdakis
University of Athens

