My Foray Into
Declarative Languages

...and what | learned about language design

. . 000
Yannis Smaragdakis 0000
University of Athens o000
X X
o0
O

EDUGATION AND LIFELONG LEARNING e’ NSRF

g =z B
- T sa | il LOGICBLOX
b inanced by Greece and the European Union

European Research Council

“Declarative”?

g)

The NEW

OXFORD

Dictionary of

5 ' NGLISH

e high-level W.W
e what, not how g

The World's MostIiusted Dictionaries

e Nno control-flow, no side-effects
e specifications, not algorithms

Yannis Smaragdakis 2
University of Athens

What Am | Doing In This eet
Space?

e Before 2008: nearly nothing

e mixin layers, generics and meta-programming,
domain-specific languages, virtual memory,
caching algorithms, FC++, automatic
partitioning, middleware semantics, automatic

testing, symbolic execution, ...

e Very little to do with declarative languages
e barring minor consulting for LogicBlox Inc.

Yannis Smaragdakis
University of Athens

Since Then...

e Doop: declarative static analysis (for Java and
now C/C++)

e DeAL: logic-based language for computation over
heap structures during GC time

e PQL: declarative, fully parallelizable language
over a Java heap

e Academic liaison for LogicBlox
e Lots of other research expressed declaratively
e also domain-specific work

Yannis Smaragdakis 4
University of Athens

Yannis Smaragdakis 5
University of Athens

DeA L[OOPSLA’10]

e First-order language for heap computations

e full connectives, no quantifier nesting, R predicates
(reachable)

e disjointness assertion

e Guarantee: all programs executable within a single
traversal of the heap, side-effect of GC!

e Example: all objects in ‘HitpSession’ are serializable,
none are threads
forall Object x: R(HttpSession)[x] ->
(x instanceof Serializable) &&
l(x Instanceof Thread)

Yannis Smaragdakis 6
University of Athens

PQ L[ECOOP’1 2,CC’19]

e Unrestricted first-order logic over the Java heap
e Guarantee: automatically parallelizable
e Example: set intersection with filtering

Set<ltem> intersection =
query (Set.contains(ltem e)):
sO.contains(e) && s1.contains(e)
&& le.is dead;

e Order of evaluation?

Yannis Smaragdakis
University of Athens

LogicBlox

e Company developing Datalog(-uesque) platform

e language, optimizer (think: JIT), DB

e all applications developed declaratively (even Ul)
e Datalog: first-order logic + recursion

e expressiveness-wise: superset of all prior

e captures PTIME complexity, Turing-complete with
simple extensions

e declarative: order of rules or clauses irrelevant (!Prolog)

e LogicBlox recently sold for ~$150M

e most value in applications: majority of top retailers
worldwide have deployed LogicBlox apps

Yannis Smaragdakis 8
University of Athens

Static Analysis in Datalog =

[OOPSLA'09, PLDI’10, POPL’11, OOPSLA’13, PLDI’'13, PLDI’14, SAS’16, ...]

e Datalog-based analysis frameworks for Java, C, C++

e 2-3K logical rules (20-25KLoC) @OOP

e \ery high performance (often 10x over prior work)
e Sophisticated, very rich set of analyses

subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-sensitivity,
call-site sensitive, object sensitive, thread sensitive, context-sensitive heap, abstraction, type
filtering, precise exception analysis

e High completeness: full semantic complexity of Java

jvm initialization, reflection analysis, threads, reference queues, native methods, class
initialization, finalization, cast checking, assignment compatibility

http://doop.program-analysis.org

Yannis Smaragdakis 9
University of Athens

Back To Our Group
(Language Design) ...

University of Athens

Quotes From os
“Blue. No! Yellow!”

o ‘[Wje've passed the point of diminishing returns. No
future language will give us the factor of 10 advantage
that assembler gave us over binary. No future language
will give us 50%, or 20%, or even 10% reduction in
workload”

e Question 1: can we get large productivity
increases?

e Also “assembler over binary”???
Sorry, | don’t buy it.

Yannis Smaragdakis 11
University of Athens

Quotes From 13
“Blue. No! Yellow!”

e ‘it is difficult to see past the rut that we seem to be in
today. ... research takes 10/20 years to hit practice”

e Question 2: are there designs that offer large
productivity gains now?

e ‘“all programming languages seem very similar to each
other. They all have variables, and arrays, a few loop
constructs, functions, and some arithmetic constructs.
Sure, some languages have fancier features like first-class
functions or coroutines...”

e Question 3: are there useful languages that have no
loop constructs, no arrays, and no functions?

Yannis Smaragdakis 12
University of Athens

Anecdote |

Based on

“Sound Predictive Race Detection in Polynomial Time”
[POPL’12]

Yannis Smaragdakis 13
University of Athens

Happens-Before (HB)

e Lamport’s happens-before relation: a very common
concept in distributed systems

e HB: 3-part relation (partial order):

T1: w(y)—»acq(l))—Prel(l)\

T2: K acq(l)=» r(x) = r(y) —»rel(l)
M

e all events by the same thread are HB-ordered (in the
order observed)

e arelease of a lock happens-before subsequent
acquisitions of the same lock

e HB is transitively closed

Yannis Smaragdakis 14
University of Athens

Happens-Before
Implementation

e Imagine you have the primitive blocks:

e tables with ordered events, maps from event to its
thread, to its type, to the lock it accesses, etc.

e How long would it take you to implement HB?

e all events by the same thread are HB-ordered (in the
order observed)

e a release of a lock happens-before subsequent
acquisitions of the same lock

e HB is transitively closed

Yannis Smaragdakis
University of Athens

15

Happens-Before Datalog 3
Implementation e
HB(el,e2) <-

el<e2, Thread[el] = Thread[e2].
HB(el,e2) <-

UnlockEvent(el, 1), LockEvent(e2,1), el<e?.
HB(el,e2) <- HB(el,e3), HB(e3,e2).

e all events by the same thread are HB-ordered (in the
order observed)

e a release of a lock happens-before subsequent
acquisitions of the same lock

e HB is transitively closed

.o How long would it take you to write that after a year of
., Datalog practice?

Yannis Smaragdakis 16
University of Athens

| know, | know...

e Lots of possible objections:

e Amdahl’s law / diminishing returns: what's the
different when you add in all the scaffolding?

e Thisis not yet a well-performing Datalog
iImplementation

e The problem happens to be a particularly good fit
e efc.

e But still...

Yannis Smaragdakis 17
University of Athens

Causally-Precedes (CP)

e CP: another 3-part relation

a release of a lock causally-precedes a subsequent
acquisition (of same lock) if the two critical sections
contain conflicting events

a release of a lock causally-precedes a subsequent
acquisition if the two critical sections contain CP-
ordered events

= (necessary for soundness in >2 threads)

CP is closed under left- and right-composition with HB
(CP-HB =HB-CP = CP)

Yannis Smaragdakis 18
University of Athens

Experience With CP

e For 2-3 weeks before the POPL'12 deadline,
3 Ph.D. students were trying to implement CP

efficiently (i.e., well-enough to get numbers)
e since 2012, two of them highly successful at Google

e They failed

e | did the CP implementation we used for the
paper's benchmarks in 1 day in Datalog

e efficient enough and good enough for our purposes
by design: “Sound Predictive Race Detection in
Polynomial Time’

Yannis Smaragdakis 19
University of Athens

Anecdote I

Experience with Doop

Yannis Smaragdakis
University of Athens

Doop, 7 years ago

e Martin Bravenboer created the first version of
the framework in under 12 months (Feb-Dec’08)

e About Y4 its current size (~6KLoC), single dev

e until the summer of 2009, | (or anyone other than
Martin) had not written a single line of Doop

e Already comparable to existing points-to
analysis frameworks for Java bytecode

e e.g., IBM Wala, by a team of several
(back then)

Yannis Smaragdakis 21
University of Athens

Doop, 7 years ago

e Doop could (at birth) fully replicate the results
of the Paddle framework

e Ph.D. work of a very competent programmer
(Ondrej Lhotak)

e Yet was ~10x faster!
e How much of a productivity boost is that?
e What were the drivers? We’ll get back to that

Yannis Smaragdakis 22
University of Athens

Revisiting the 3 Questions

Yannis Smaragdakis
University of Athens

23

The Three Questions

e Question 1: can we get large productivity
increases?

e Question 2: are there designs that offer large
productivity gains nhow?

e Question 3: are there useful languages that
have no loop constructs, no arrays, and no
functions?

e | think you know my answers

Yannis Smaragdakis 24
University of Athens

What Can We Learn From 4
This?

e Declarative languages are probably just one
part of the productivity answer

e Can we take a step back?
e Speculative, subjective “lessons”

Yannis Smaragdakis 25
University of Athens

Lesson: Productivity and
Performance Tied Together

Yannis Smaragdakis 26
University of Athens

Lesson: Productivity and oo
Performance Tied Together

e If a language can give orders-of-magnitude
Improvements in productivity
THEN
its Implementation has the potential for
orders-of-magnitude improvements in
performance

e both are aspects of being abstract

e how is it possible to get productivity improvements
If one needs to specify data and algorithms

o concretely, with “loops and arrays”?
x>

/ X i
s
o

AN

Yannis Smaragdakis 27
University of Athens

Lesson: Productivity and
Performance Tied Together

e Abstract languages can change the
asymptotic complexity of a program

e E.g., In Datalog:

ACX,y) <- ACy,z), B(z,x,w), C(w,y).
C(x,y) <- ACy,w), D(w,x).

e order of joins
e indexing
e Incrementalization

Yannis Smaragdakis
University of Athens

28

Lesson: Productivity and s
Performance Tied Together

e Order of joins: A<-A,B,C possibly catastrophic
e IS A<-A,C,B better? Probably
e What if no Cindex on y?

ACX,y) <- ACy,z), B(z,x,w), C(w,y).
C(x,y) <- AQy,w), D(w,x).

Yannis Smaragdakis 29
University of Athens

Lesson: Productivity and s
Performance Tied Together

e Joining tables is one kind of looping, recursion
IS the other

ACX,y) <- ACy,z), B(z,x,w), C(w,y).
C(x,y) <- ACy,w), D(w,x).

e iImplemented as:

AA(X,y) <- AA(y,z), B(z,x,w), C(w,y).
AA(X,y) <- ACy,z), B(z,x,w), AC(w,y).
AC(x,y) <- AA(Cy,w), D(w,x).

e Would you do this by hand? Main source of
inefficiencies in Paddle, handwritten analysis

Yannis Smaragdakis 30
University of Athens

Lesson: Need For Firm Mental
Ground

Yannis Smaragdakis 31
University of Athens

Lesson: Need For Firm Mental | ::¢
Ground

e If a language can give orders-of-magnitude
Improvements in productivity
THEN
it will make it too easy to break things. The
language design should naturally keep sanity

Yannis Smaragdakis 32
University of Athens

Lesson: Need for Firm Mental |::
Ground

e In Datalog development, the #1 sanity-
keeping feature is monotonicity

e Extra rules can only produce more results
e Everything that used to hold, still does
e though not entirely true, close enough
e Also, termination: programs will converge
e though not entirely true, close enough

Yannis Smaragdakis 33
University of Athens

Lesson: Development Patterns
Change

Yannis Smaragdakis 34
University of Athens

Lesson: Development Patterns | ::¢
Change

e If a language can give orders-of-magnitude
Improvements in productivity
THEN
a programmer’s workflow will change fairly
radically

Yannis Smaragdakis 35
University of Athens

Lesson: Development Patterns | ::¢
Change

e My Datalog experience
e much easier to pick up code after a while
e much easier to develop incrementally

e debugging not trivial

e goes with performance improvement: lots of
iIntermediate results missed

e more time running than writing code

Yannis Smaragdakis 36
University of Athens

Conclusions:
Revisiting the 3 Questions

Yannis Smaragdakis 37
University of Athens

The Three Questions

e Question 1: can we get large productivity
increases?

e Question 2: are there designs that offer large
productivity gains nhow?

e Question 3: are there useful languages that
have no loop constructs, no arrays, and no
functions?

e | will claim “yes” on all three

Yannis Smaragdakis 38
University of Athens

More Importantly

e We expect this story (productivity, different
design) from domain-specific languages

e What's the common domain of
e race detection
e points-to analysis
e retail prediction applications?

Yannis Smaragdakis 39
University of Athens

