
Achieving Architectural Control via
Language Support for Capabilities

Jonathan Aldrich
aldrich@cs.cmu.edu
http://www.cs.cmu.edu/~aldrich/

IFIP Working Group on Language Design
January 2016

School of Computer Science

contributions from:
Darya Kurilova
Joseph Lee
Troy Shaw
Esther Wang
Alex Potanin
Cyrus Omar
Yangqingwei Shi
Du Li

Do You Control Your Architecture?

• Architectural Control [AOPL14] is the ability of the
software architect to:
• Specify architectural constraints sufficient to ensure system

properties
• Enforce those constraints as the system is built and evolved

• Distributed system example:

• Is the architecture followed consistently in the system?
• Does the implementation always use SSL?
• Does the implementation add any hidden connections?
• Does the client access the disk, or is it stateless (as shown)?

2

SOAP over SSLClient Server
out in

DB

Architectural Control is Hard

• Distributed system example in Java

• In Java code, is SSL used consistently? Are there other
connections?
• Does dynamically loaded code use the network?
• What about third party libraries, or native code?

• Many architectural properties similarly depend on use of resources
• Network, storage, etc. – if the OS controls it, the architect may want to also

• Today constraints are enforced (imperfectly) via software process
• Each developer must know and follow the architectural rules during evolution
• Assuring third-party code is difficult

• Sandboxing is one possible technique – but difficult and error-prone in practice
[CMD+15]

3

Client Server
out in

SOAP over SSL DB

A Vision: Own Your Architecture

1. Resource architecture
• A specification of which modules can use key resources

• Example: only the Middleware module can use the network
• Resources include I/O and global state, but additional resources can be

defined
• Enforced by built-in language mechanisms

2. Delegate enforcement of properties
• Owners of modules that access the relevant resource

• Example: the architect discusses important communication invariants with the middleware
lead, and important storage invariants with the database lead

3. Keep architecture under version control
• Architect approves all changes

• Example: if a developer requests access to the network, the architect can
approve—or more likely, tell the developer to use the existing middleware library

4

Capabilities [DV66]

Capability-Based Resource Control

Is owning the architecture
sufficient to control it?
• What if the Client opens other,

unsecured, connections?

Solution: resources as capabilities
• Capability: an unforgeable token

controlling access to a resource [DV66]
• No ambient capabilities

• By default, Client and Server have no
network capability

• Capability delegation
• Explicitly pass capabilities to modules,

such as Middleware, that need them

5

Client Server
out in

SOAP over SSL DB

Conceptual Architecture [SG94]

Capability/Object Structure

Client Server

Middleware

Network
Storage

Capability-Safe Languages [Mil06]

• A language in which an object can only get a capability if it is
explicitly given one

• Restrictions
• No ambient authority – resources unavailable without a capability

• E.g. cannot simply import java.io.* and then open a file
• No global mutable state – would allow anyone to get/put capabilities

• Global variables are OK if they hold transitively immutable values
• Prior work: E, Joe-E, …

6

Capability-Safe Languages

• A language in which an object can only get a capability if it is
explicitly given one

• Our research
• A way to achieve architectural control via capabilities (outlined above)

• Future work: validation, extension to IDEs and other tools
• A capability-safe module system

• Reconciles conveniences of typical module systems with capability safety
• A formalization of capabilities in the presence of mutable state

• Clarifies the role of mutable state in capability safety
• A refined, non-transitive notion of authority

• Supports informal reasoning about capability restriction
• Future work: formalize this reasoning

• Design principles for capability-safe type systems and reflection
• Prior work focused on dynamically typed languages (E) or adapting existing designs (Joe-E)

7

Capability-Safe Module System

8

Resource modules capture state or I/O;
Pure modules don’t

Pure modules can be imported freely;
Resource modules must be required
parameters of the client module

A resource module can be instantiated,
passing in parameters (if any)
(cf. ML, Units, Newspeak, etc.)

Capability-Safe Module System

9

Capability-Safe Module System

10

I/O Capabilities

resource module Main
require FFI
instantiate FileIO(FFI)
instantiate Logger(FileIO)
instantiate Client(Logger)

11

The OS passes a foreign function
interface (FFI) capability to Main

The FFI capability is used to
instantiate the I/O module

We can restrict the FileIO
capability by implementing
a logging facility on top of it

The Client can write information
to the log, but assuming Logger is
implemented securely, it cannot do
any other File I/O.

Note: the security of Logger can be
verified simply by inspecting the
Logger type!

Capability-Safe Modules: Discussion

• Resource modules are like Newspeak, or Units
• Can only be instantiated or passed as parameters
• Syntax as convenient as Java import from within a module
• Slightly less convenient for clients that must instantiate/pass

resource modules—but permits more reasoning in exchange

• Pure modules are unrestricted, as in Java
• Hopefully lower cost overall relative to Newspeak/Units

• Main can require the foreign function interface (FFI)
• It then passes the FFI capability to I/O modules
• Shortcut: also OK for main to require modules that take only the

FFI as a parameter
12

Demo

13

A Capability-Safe Object Calculus

• Calculus includes objects, methods, mutable fields
• Structural object types

• stateful (have mutable fields/capture state) or pure
• A stateful type is a supertype of the equivalent pure type

• A bind construct for module translation
• restricts the environment of the second expression to contain only the

variable x – cf. Scala’s Spores [MHO14]

14

A Capability-Safe Object Calculus

• Key rule DT-DEFPURE removes stateful variables from the
context when checking a pure method

• DT-VARX is only valid in stateful objects

15

Translating Modules to the Calculus
resource module Main

require FFI
instantiate FileIO(FFI)
instantiate Logger(FileIO)
instantiate Client(Logger)
...

• Modules with require become functions (cf. functors)
• bind is used to bind only the imported modules
• instantiate appropriate modules by applying functions
Note: some details simplified for presentation

16

def Main(ffi:FFI):Tmain
bind
ffi = ffi
FileIO = FileIO
Logger = Logger
Client = Client

in let
fio = FileIO(ffi)
log = Logger(fio)
client = Client(log)

in ...

The Nature of Authority

• What is the authority of Client?
• given reasonable implementations of Logger/FileIO abstractions

• Prior work’s answer: Logger, FileIO, and FFI
• But we argue that Client can only log

• It cannot do arbitrary File I/O, let alone call arbitrary foreign functions
• Authority should be viewed as non-transitive

• There is File IO going on, but it is being done by the Logger
• Client’s authority is only to Logger, unless/until Logger returns a FileIO reference

to the Client
• Enables reasoning about authority restriction

• Logger restricts the FileIO capability to only support logging
• Future work: additional type system support for this

17

Client Logger FileIO FFI

Authority Safety

• Definition of Authority: the objects I can access directly
• In my fields
• Captured in the scope of my methods

• Theorem [Authority Safety]: the authority of an object o
increases (by adding an object v) only when:
• o creates a new object value v
• A method of o is invoked, passing an argument value v
• A method that o invoked returns, returning a value v

• Practical consequence:
• Can reason about an object’s authority via calls to its interface
• Modules are objects, so this applies to modules, too

• Nothing special is needed to handle dynamically loaded modules

18

Type Tests and Capability Safety
class BaseLogger

def log(s:String)

if (log instanceof ExposedLogger)
((ExposedLogger) log).getLogFile().delete()

• Would like interface to restrict operations we can perform
• But downcasts are a problem

• Wyvern’s design
• Structural types: no downcasts possible
• Datatypes: fixed set of subtypes

• Pattern matching is OK – can enumerate all possibilities
• Open tagged types [LASP15]

• Also allow pattern matching downcasts
• Lose reasoning about interface—but only when this construct is used
• Contrast Java – every non-final type is open and tagged

19

class ExposedLogger
extends BaseLogger

def getLogFile():File

Capability-Safe Reflection
val m:ObjectMirror = reflect(baseLogger)
val log:ObjectMirror = m.invoke(“getLogFile”)
log.invoke(“delete”)

• Reflection can potentially violate capability safety
• Above: can invoke hidden method on baseLogger

• Safe reflection in Wyvern – universally available
• Only provides access to methods visible when the mirror was obtained
• Can’t do anything with reflection that you can’t do without it
• A reflection capability can be restricted to a narrower type

• Unsafe reflection also provided
• Access all members – useful for debugging
• This reflection is available only as a resource module

• Thus subject to the architectural control mechanisms described above

20

Capability-Based Architectural Control

How can I enforce key architecture properties?

• Own your architecture
• Architecture specification under source control
• Use capabilities to delegate resource access in a limited way

• Use a capability-safe language
• Treat resource modules as capabilities – distinct in type system
• Non-transitive authority for capability restriction
• Design of type tests and reflection enhances type-based

reasoning

Coming your way soon as part of the Wyvern project
• Thanks: NSA Lablet, DARPA BRASS program

21

