Teaching with Grace: First evaluations

Kim Bruce

Pomona College

Foint work with Andrew Black, James Noble, &
a host of students.

(5race

e (Goal:

e Integrate current ideas in programming
languages into a simple, general-purpose
object-oriented language aimed at helping
novices learn to program.

e Spent 5+ years developing/implementing

language (details of language later)

Current Status

e Implementations

e On web via Javascript

e http://web.cecs.pdx.edu/-grace/minigrace/exp/

e Alternate implementation in C#

e Teaching experience so far:
e Fall '14, ‘15 in Pomona intro course

e Spring ‘15 in 0-0 design course at PSU &
conversion course

Previous Intro to CS
at Pomona

e Java-based

e Objects-first gy N
(/TNPPROACH, || |
e d‘tg' _;

I
cay ,'_‘.,« MM
- N 4 e
/TN A .

e Event-driven programming
e GUI

e Graphics
e Animations using threads

o Text is Java: An eventful approach

The Experiment

e Rewrite text for (Grace:

e Programming with Grace

e Teach new Grace section in parallel
with existing Java sections.

e Presented as experimental section that
would teach Java by end.

Course Structure

e 10 weeks (29 lectures) of Grace

e Objects, classes, control structures, recursion,
inheritance & subtyping, strings, exceptions,
graphics, animations (concurrency), GUI event-
handling, lists, matrices.

e 4 weeks of Java
e including threads, arrays, I/O

e Searching, sorting

Courses Matched

o Texts (rewrite of Java approach to Grace)

* Programming assignments

e Including test programs

e Exams

e Major difference: learning 2nd language

Student response to (Grace

* Very positive
e [Language syntax and semantics easy.

e Web-based implementation popular

e Negatives

e [ssues w/ error messages & compile speed,

e execution speed fine

e Most negative — learning Java at end.

e Had to transition to Java-based data structures
course.

Preliminary Results

e Grace class did better or equal to Java
N every measure:

e Midterm: median +9, mean +14
e Final: median o, mean +1 Why?
e Test Program 1: median +4, mean +4

e Test Program 2: median +8, mean +4

 due 2 weeks earlier for Grace students

What’s wrong with current

languages?

Why go to this effort?

Java Problems

e public static void main(String [] args)

e Primitive types versus objects,

(44 2

o “==" versus “equals”

e Flawed implementation of generics

e Static wersus instance — on variables &
methods

e float vs. double vs. int vs. long

I1

Python Problems

>>> class aClass:
"""A simple example class
val = 47
def f(self): isappearing self?
return 'hello world’

>>> X = aClass()

>>> X.value«=17 uncaught typos
>>> X.vdl

47

>>> X.T() no information hiding

'hello world' except by name mangling

12

(3race overview in 2 slides

e Object-based (with classes)

e First-class closures (look like blocks)

e Everything is an object
e Default visibility is “correct”
e Multi-part method names

e Indenting is significant (but braces too)

(3race overview in 2 slides

e Single numeric type

e Gradually typed (gradually)

e Structural types distinct from classes
e No null (use match/variant types)
e Lists rather than arrays

e Dialects

Hello World in Grace:

print "hello world"

15

Objects

def mySquare = object {
def smallest = 2
var side := 10

method area {
side * side

ks

method stretchBy(n) {
side := side + n

ks

¥

Defaults: defs, variables & constants are confidential,

methods are public - can be overridden
16

Types

e ... are optional and can be added gradually

e ... are structural (weed not be declared with
object or class)

o if it quacks like a duck, it is a duck
e subtyping too

e Classes are not types, they are object factories!

17

Classes in (Grace

e ... generate objects:

class aSquare WithSide (s: Number) -> Square {

var side: Number := s

method area -> Number {
side * side

}

method stretchBy (n: Number) -> Done {
side := side + n
} Create object with

aSquare WithSide(20)
print "Created square with side {s}"

No 58pdi’dt€ constructors.

Type annotations can be omitted or included
18

Classes in Java

public class Square WithSide implements Square {
private int side;

public Square WithSide(int s) {
side = s;
System.out.println("Created square with side” + s);

}

public int area() {
return side * side;

} Create object with

new Square WithSide(20)
public void stretchBy (int n) {

side = side + n;
}
}

Side by Side

class aSquare WithSide (s: Number) -> Square { [public class Square WithSide implements Square {

var side: Number :=s private int side;
method area -> Number { public Square WithSide(int s) {

side * side side = s;
} System.out.println("Created square with :

}

method stretchBy (n: Number) -> Done {

side := side + n public int area() {
} return side * side;

}

print "Created square with side {s}"
} public void stretchBy (int n) {
side = side + n;
}

}

Multi-part method names

e Taken from Smalltalk

e Makes code more readable:

lineFrom (startPoint)
to (endPoint) on (canvas)

o Indenting is significant

Blocks

e Syntax for anonymous functions

def square = {n -> n * n} < function
square.apply (7) // returns 49

def nums = 1 .. 100
def squares = nums.map {n -> n * n}

e Can have any number of parameters

e Represents object with apply method

DD

Blocks

* Blocks make it simple define new “control
structures” as methods

method repeat (n: Number) times (block) {
for (1 .. n) do {1: Number ->
block.apply

¥
¥

repeat (5) times {
P ha
} while {b} pausing (ms) do {code}

25

Avoid Hoare’s
“Billion Dollar Mistake”

e No built-in null
e Accessing uninitialized variable is error

e Replace null by:
e sentinel objects, or

® error actions

24

Dialects

e Idea “stolen” from Racket

e Used to expand or restrict language

e Includes static checker.

e Examples:
e objectdraw, requiredlypes, staticTypes, ...

e Add new constructs (not new syntax)

e [.g., graphics primitive, control constructs, ...

Advantages over Java

e Use objects as programs, classes later

e no public static void main
e Only 1 numeric type
e No separate constructor “method”
e Blocks as listeners for GUI
e Use lists instead of arrays

e No “equals” method, no overloading

Advantages over Java

e No classes as types, no “static” features

® No primitive types
e Simple (zodern) for loops
e Use loops with timers instead of Threads

e No null pointer exception

o uninitialized error instead

e Type-safe match instead of casts

Java has, but Grace does not

Type-based overloading of methods.

Arity-based overloading.

Primitive data — int, boolean, char, byte, short, long, float, double.
Classes (as built-in non-objects).

Packages (as built-in non-objects).

Constructors (as distinct from methods) and new.

Object initializers (code in a class enclosed in { and })

import * — introduction of names invisibly:.

9 Operations on variables, like x++ meaning x:=x+ 1.

10 Multiple numeric types (so that, for example, 3.0 and 3 are different).
11 Numeric literals with F and L.

12 Integer arithmetic defined to wrap.
13 == as a built-in operation on objects.
14 static variables.

15 static methods.

O~ O\ A W N H

Java has

16 static initializers.

17 final.

18 private (which is much more complicated than most people realize,
since it interacts with the type system).

19 C-style for loops.

20 switch statements.

21 Class-types.

22 Packages

23 Package-based visibility.

24 Arrays (as a special built-in construct with their own special syntax
and type rules).

25 Required semicolons.

26 () in method requests that take no parameters.

27 public static void main(String[} args) necessary to run your code.

28 Object with "functional interfaces" treated as A-expressions.

29 Null

SRS T S

(5race has

String interpolation “The value of x is {x}”
Object expressions

Nested objects

Closures w/correct scope

Operators defined as methods

Match statements & variant types

Summary

e Grace is a small yet powerful language with simple
conceptual foundations

e Starting with objects simplifies teaching

e Classes can be introduced soon thereafter

e Separating classes from types is conceptually
important

* Dialects & blocks allow customization of language

 Gradual typing provides flexibility for instructors

e add types once students have seen the need

31

G race

¢ Please Contribute!

e Need IDE implementors, library designers,
and more.

e Want to teach with it?
e Information at gracelang.org

e Implementation at
http://web.cecs.pdx.edu/-grace/minigrace/exp/

o Use Chrome browser for best experience

32

(Questions?

