Language design smells

or: deconstructing language design (?)

Tijs van der Storm

E Centrum Wiskunde & Informat ica

PLEASE KNOCK BEFORE ENTERING

(1000) PLEASE IGNORE .4

PLEASE ABSTAIN FROM (1005)

(1009) DO STASH .1 + .2 + .5 + .6
DO .4 <- #1

DO (1004) NEXT

(1004) PLEASE FORGET #1

DO .3 <- ’¥.1¢.2° " #0¢£#65535"

DO .6 <- ’&.1¢.2° "’ #0¢#65535°
PLEASE DO .5 <- "WI16~#32768’ ¢#1""#3
DO (1002) NEXT

DO .4 <- #2

(1005) DO (1006) NEXT

(1999) DOUBLE OR SINGLE PRECISION OVERFLOW
(1002) DO (1001) NEXT

(1006) PLEASE FORGET #1

DO .5 <— ¥"16~.6° "#1"£#1° ~“#3

DO (1003) NEXT

DO .1 <- .3

© 00 J O Ot b W N

N = = = = e e e e e
S © 00 J O Ot = W N —~= O

Monday, March 5, 12

Which one is better
designed!?

Why language design smells!?

® More language design now than ever (DSLs)
® TJeaching language design

® Body of knowledge

® Common vocabulary

® Making implicit knowledge of experts explicit

Language as user interface

® NOT implementation

-

Q0
-
-

0114
0700510106050
0100191916600
016061 291060,5
O OO0 1

10004 190114

REAL Programmers code in BINARY.

Monday, March 5, 12

do Considered od:
A Contribution to the Programming Calculus*

Eric C.R. Hehner
Computer Systems Research Group, University of Toronto, Toronto M55 1A4, Canada

Summary. The utility of repetitive constructs is challenged. Recursive refine-
ment 18 claimed to be semantically as simple, and superior for programming
ease and clarity. Some programming examples are offered to support this
claim. The relation between the semantics of predicate transformers and

“least fixed point” semantics is presented.

Eric C. R. Hehner, Acta Informatica, | | (4), 287-304, 1979

Monday, March 5, 12

do Considered od:
A Contribution to the Programming Calculus*

Eric C.R. Hehner
Computer Systems Research Group, University of Toronto, Toronto M55 1A4, Canada

Summary. The utility of repetitive constructs is challenged. Recursive refine-
Joent 1s claimed to be semantically as simple, and superior for programming
ease_,_and, clarl_ty%Some programming examples are offered to support this
“claim. The relation between the semantics of predicate transformers and

“least fixed point” semantics is presented.

Eric C. R. Hehner, Acta Informatica, | | (4), 287-304, 1979

Monday, March 5, 12

do Considered od"' Considered Odder than "do Considered ob"

David Harel
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

begin
Noticing that the exact reflection of "do" is not "od" but "ob", we suggest in this one

sentence paper that the popular proposal of using symmetric pairs of keywords in programming

languages be followed to the letter, so to speak.

nipad

References (Note: reference [1]is not cited in the text.)

[1] E. C. R. Hehner, "do Considered od: A Contribution to the Programming Calculus",

Acta Informatica 11, pp. 287-304 (1979).

David Harel, ACM SIGPLAN Notices, 15(4), 1980

Monday, March 5, 12

A Further Note on Symmetric Keyword Pairs

Richard Hamlet
Department of Computer Science

University of Maryland
College Park 20742

David Harel’'s do ... ob paper' is compelling, but difficult to implement on
limited-font equipment. Without true character-reversing the scheme is case- and
font-sensitive: neither DO ... OB nor do ... ob are satisfactory. In this note I will stick
to what most terminals can type.

Harel does not go far enough toward symmetry. Once the keyword pairs are truly
symmetric, what of the material enclosed? Is not

do
X ;=0
0 =X
ob

attractive? (And note that a proper choice of variables and constants yields true
symmetry.) Anyone can see where these remarks are heading: we should be writing
palindromes over an alphabet whose symbols are their own reversals. (Accidental reversal
pairs like d - b are a complication that should be ignored.) The effect of such a change
on parsing courses and textbooks in computer science should be entirely salutory.

While we are at it, putting the uglier of two keywords at the end of a construction
has always seemed to express a foolish optimism (start with the good, perhaps the bad -
will not happen). Programmers should be pessimists, and prefer (say)

BASIC FORTRAN
TXEN i = 1 TO 10 EUNITNOC 100 | = 1,10
NEXT | 001 CONTINUE

Richard Hamlet, ACM SIGPLAN Notices, 15(6), 1980

Monday, March 5, 12

do CONSIDERED REFLECTIVELY: A CONTRIBUTION TO GROUP PROGRAMMING

LeRoy Johnson
School of Computer Science
University of New Brunswick
Fredericton, N.B., Canada

In this one paragraph, we do extend the reflective work of Harel
(21, TInsightful as this work is we feel that Harel in his rush to pub-
lication was too quick to do the obvious; we further notice that the top
down reflection of do is qo and the compound Harel-Johnson reflection
gives op. The relationships of these do reflections are expressed in
Fig. 1(a). It is not surprising that previous work is unnecessarily
restricted to one dimension since current use of the do is essentially
based on the linear line, however, we believe two dimensional programming
is now next in line for development, and this motivated our present para-
graph. Extension to higher dimensions does not appear fruitful if we
require closure in the Roman alphabet, thus, the remainder of this
paragraph is restricted to two dimensions. The observation so far might
be mere curiousity except for the fact that horizontal and vertical
reflection generate the Klein 4 group when it is realized that their
product on do is equivalent to a rotation of 180° on do. Interestingly,
the result of an even number of reflections on any element of Fig. 1(a)
is independent of the order of reflection. In other words you can even
do programming without logical thinking, unless you are odd.

do v ob A v H R
R A A V H R
\' \ A R H
H H
H H R A Vv
R R H \Y A
qo v op
(a) do symmetries in the alphabet (b) Xlein 4 group
Figure 1 V - vertical reflection H - horizontal reflection

R - rotation 180¢°

Leroy Johnson, ACM SIGPLAN Notices, 15(12), 1980

Monday, March 5, 12

do CONSIDERED obVIOUSLY odd IN THREE DIMENSIONS

LeRoy Johnson
School of Computer Science
University of New Brunswick
Fredericton, N.B., Canada

In this two paragraph paper, we hasten to extend both our
results and an appology to Harel for chiding him on his lack of reflec-
tion. The pot has called the kettle black, and, indeed, potted we were
undoubtly when we penned our previous paper. In Johnson [4], we claimed
that extension of the do results to higher dimensions was not fruitful,
for instance a rotation of 90¢ takes do out of the Roman alphabet. This
incorrect assumption was due to a lack of reflection on our part. On
rereading the interchange between Harel [2] and Hehner [3] we were able
to decouple the confounding of reflection in the interchange and obtain
more solid results. Indeed no reflection is required to see that od is
the interchange of do.

In Fig. 1 the interchange and reflection operations are
properly related in three dimensions. Clearly, do by prior use should
occupy the zero axis, thus an application of the mapping of Fig.l. 'to
do will generate the relationships depicted by the cube of Fig 2. It
is obvious that we can oddly enough also form the Klein 4 group of
Johnson [4] on od and that these two groups are related by interchange;
this then naturally extends the do mappings to three dimensiomns.
Extensions to dimensions higher than 3 appear computationally intractable
on paper, and we leave this to other researchers as an open problem, for
we can do no more,

od bo

do ob

reflection on Y axis

reflection on "X axis

Y 0q PO

Fig. 1 Fig. 2 go op

Leroy Johnson, ACM SIGPLAN Notices, 15(12), 1980

Monday, March 5, 12

Bracketing Programme CaAanstructs

AT PEC M WEE OIS AEE SN SCR AR VD SN N AT MRS A IS AR T AR KR R R S SR D A kol = xS el U

Ja Gs Hunt

FRTA-4233y LGZ Landis GHyr Zug AGy CH-6301 Zuje.

Amused by the Levity of {3} and annoyed by the
attitude of {21} I should Like to make a serionus
contribution to the dose.«0d controversye.

In the realm of expressions of the traditional
arithmetic kindey the use of brackets and parentheses L=«
clarify and disambiguate generally gqoes unchallenged.
Certainly for expressions nf timited complexity the=
method usually works for the human reader: whilst for
a machine free of problems of the psychology of
perceplionsy greater depths of nesting present N
theoretical difficulty.,

As Lisp and Algol-58 have shewns the same method

may be apnlied to bracket ing other programms
constructs: yet the majority of human readers tend 1t
find this 1lacking in claritye. Lisp provides n=2

alternativey and has accordingly been much abused and
reviledes Algol-68 permits the use of symmelric keyword
pairsy such as comment...tnemmoc: probably the one
axample of a symmetry which is not beautiful.

J. G. Hunt, ACM SIGPLAN Notices, 16(4), 1981

Monday, March 5, 12

Bracketing Programme CaAanstructs

AT PEC M WEE OIS AEE SN SCR AR VD SN N AT MRS A IS AR T AR KR R R S SR D A kol = xS el U

Ja Gs Hunt

FRTA-4233y LGZ Landis GHyr Zug AGy CH-6301 Zuje.

Amused by the Levity of {3} and annoyed by the
attitude of {21} I should Like to make a serionus
contribution to the dose.«0d controversye.

In the realm of expressions of the traditional
arithmetic kindey the use of brackets and parentheses L=«
clarify and disambiquate generally qops unchallenged.
Certainly for expressigiSmmismsniieidudbudgMplexity the
method usually works farjthe hUﬂaﬁ reader,y whilst for
a machine free of pr3Poefdcaispcaspenraesaychology ot
perceplionsy greater depths of nesting present n:s
theoretical difficulty.,

As Lisp and Algol-58 have shewns the same method

may be apnlied to bracket ing other programms
constructs: yet the majority of human readers tend 1t
find this 1lacking in claritye. Lisp provides n=2

alternativey and has accordingly been much abused and
reviledes Algol-68 permits the use of symmelric keyword
pairsy such as comment...tnemmoc: probably the one
axample of a symmetry which is not beautiful.

J. G. Hunt, ACM SIGPLAN Notices, 16(4), 1981

Monday, March 5, 12

Bracketing Programme CaAanstructs

AT PEC M WEE OIS AEE SN SCR AR VD SN N AT MRS A IS AR T AR KR R R S SR D A kol = xS el U

Ja Gs Hunt

FRTA-4233y LGZ Landis GHyr Zug AGy CH-6301 Zuje.

Amused by the Levity of {3} and annoyed by the
attitude of {21} I should Like to make a serionus
contribution to the dose.«0d controversye.

In the realm of expressions of the traditional
arithmetic kindey the use of brackets and parentheses L=«
clarify and disambiquate generally qops unchallenged.
Certainly for expressigiSmmismsniieidudbudgMplexity the
method usually works farjthe hUﬂaﬁ reader,y whilst for
a machine free of pr3Poefdcaispcaspenraesaychology ot
perceplionsy greater depths of nesting present n:s
theoretical difficulty.,

As Lisp and Algol-58 have shewns the same method

may be apnlied to bracket ing other programms
constructs: yet the majority of human readers tend 1t
find this 1lacking in claritye. Lisp provides n=2

alternativey and has accordingly been much abused and
reviledes Algol-68 permits the use of symmelric keyword
pairsy such as ¢ O0NMeRdumokiiiibdrimommpddbniedayse the one
sxample of a SymmetryQwhich“iswnot_bgautifuiﬁf

J. G. Hunt, ACM SIGPLAN Notices, 16(4), 1981

Monday, March 5, 12

Today

What is good language design.

NOT:What is a good language!

Can we explain good language design!?
Approach this question from the other side

® language desigh smells

n gﬁ b

.......

A code smell 15 a hint that something has gone wrong somewhere in your code.

http://c2.com/cgi/wiki?CodeSmell

Monday, March 5, 12

http://c2.com/cgi/wiki?CodeSmell
http://c2.com/cgi/wiki?CodeSmell

.>ji >
BN

%‘ Code Smell

A code smell 1s a hint that something has gone wrong somewhere in your code.

gt\g“k

Symptom of deeper issues (maybe)

http://c2.com/cgi/wiki?CodeSmell

Monday, March 5, 12

http://c2.com/cgi/wiki?CodeSmell
http://c2.com/cgi/wiki?CodeSmell

>
o)
i Code Smell

A code smell 15 a hint that something has gone wrong somewhere 1n your code.

Symptom of deeper issues (maybe)

Does not affect user of software, but programmer

http://c2.com/cgi/wiki?CodeSmell

Monday, March 5, 12

http://c2.com/cgi/wiki?CodeSmell
http://c2.com/cgi/wiki?CodeSmell

Smell Example

“Duplicated code”™

public boolean checkGameOver(Graphics g2) {
g2.setColor(Color.RED);

1f (this.playerl.getHealth() < 0) {
g2.drawString("Game Over, winner: " +
this.playerl.getName(), SCREEN_PADDING,
PLAYER_HEIGHT + 250);
return true;

h

1f (this.player2.getHealth() < @) {
g2.drawString("Game Over, winner: " +
this.player2.getName(), SCREEN_PADDING,
PLAYER_HEIGHT + 250);
return true;

h

return false;

}

Monday, March 5, 12

e

i< Language Design Smell

A language design smell 1s a hint that something has
gone wrong somewhere 1n your language design.

Monday, March 5, 12

AN iy
ik Language Design Smell

A language design smell 1s a hint that something has
gone wrong somewhere 1n your language design.

Does affect user (= programmer)

Monday, March 5, 12

>
i~ Language Design Smell

A language design smell 1s a hint that something has
gone wrong somewhere 1n your language design.

Does affect user (= programmer)

[Parallel to user interface design smells]

Monday, March 5, 12

Visual Basic 6

Option Base Statement Example

This example uses the Option Base statement to override the default base array subscript
value of 0. The LBound function returns the smallest available subscript for the indicated
dimension of an array. The Option Base statement is used at the module level only.

Option base 1 ' Set default array subscripts to 1.

Dim Lower

Dim MyArray(20), TwoDArray(3, 4) ' Declare array variables.
Dim ZeroArray(0 To 5) ' Override default base subscript.

' Use LBound function to test lower bounds of arrays.

Lower = LBound(MyArray) ' Returns 1.

Lower = LBound(TwoDArray, 2) ' Returns 1.

Lower = LBound(ZeroArray) ' Returns 0.

http://msdn.microsoft.com/en-us/library/aa266 |180(v=vs.60).aspx

Cf. VBA Language Specification, Microsoft Corporation, Release: March 15,2010, p. 56-57

Monday, March 5, 12

http://msdn.microsoft.com/en-us/library/aa266180(v=vs.60).aspx
http://msdn.microsoft.com/en-us/library/aa266180(v=vs.60).aspx

JavaScript block scoping

function () {
var 1 = 13;
1
var 1 = 42;
print(i);
I3
print(i);
s

https://github.com/spencertipping/js-in-ten-minutes
http://matt.might.net/articles/javascript-warts/

http://oreilly.com/javascript/excerpts/javascript-good-parts/awful-parts.html

Monday, March 5, 12

http://oreilly.com/javascript/excerpts/javascript-good-parts/awful-parts.html
http://oreilly.com/javascript/excerpts/javascript-good-parts/awful-parts.html
http://matt.might.net/articles/javascript-warts/
http://matt.might.net/articles/javascript-warts/
https://github.com/spencertipping/js-in-ten-minutes
https://github.com/spencertipping/js-in-ten-minutes

JavaScript block scoping

function f() {
var 1 = 13;
i | prints: 42 42
var 1 = 42;
print(1);
¥
print(i);
¥

https://github.com/spencertipping/js-in-ten-minutes
http://matt.might.net/articles/javascript-warts/

http://oreilly.com/javascript/excerpts/javascript-good-parts/awful-parts.html

Monday, March 5, 12

http://oreilly.com/javascript/excerpts/javascript-good-parts/awful-parts.html
http://oreilly.com/javascript/excerpts/javascript-good-parts/awful-parts.html
http://matt.might.net/articles/javascript-warts/
http://matt.might.net/articles/javascript-warts/
https://github.com/spencertipping/js-in-ten-minutes
https://github.com/spencertipping/js-in-ten-minutes

Manifestation

function () {
var 1 = 13;

i

3 JavaScript blocks
Counter appear to introduce

intelligence” new scopes, but they
don’t. ¥

var 1 = 42;
print(i);

print(i);

¥
// prints 42 42

Monday, March 5, 12

Language desigh smell
= !

® Domain independent ® Accidental

® language independent ® Wicked

® Fixable ® Arbitrary

® Unnecessary ® Circumstantial
® Debatable (trade-offs) ® Unintended

® Net negative

Monday, March 5, 12

Smell vs feature

Smell Feature
—
contingent motivated
unnecessary required
irrational rational
accidental essential
ad hoc structural
arbitrary intentional
fringe central
consequence decision

negative positive

Monday, March 5, 12

Syntax hyperglycemia Library over language

. . Simpler alternative
Inappropriate convenience

Backfiring orthogonality

Global influences local

Natural language en

Desolate places

Doesn't play with others

_Inversion of defaults Abstraction oversight

Artifacts of implementation Rigidity gone wrong

Keyworditis Dark corners

Evervthing is a x Counter intelligence

Monday, March 5, 12

Research agenda

Literature survey (annotated bibliography?)
Catalogue of smells (Wiki? Taxonomy?)
Language design (anti-)patterns!?

Language critiques?

Language scholarship?

http://www.languagedesign.org

http://www.languagedesign.org
http://www.languagedesign.org

PL Hall of Shame

; n
800/ ["Y1sys Information Architects = x \) - l
€ - C &) homepage.mac.com/bradster/iarchitect/ wi a ¥
dome Isys Information Architects

sign Making information usable

Announcements
Interface Hall of Shame

Hall of Shame

%ff%ﬂ The Interface Hall of Shame is an irreverent collection of common interface design mistakes. Our hope is that by

Stupidity highlighting these problems, we can help developers avoid making similar mistakes.

Color We are constantly searching for examples of design practices that are worthy of extinction, and those worthy of emulation

Teminology (see the Interface Hall of Fame). Submit your own nominations for potential entries into either hall to

Enors feedback@ iarchitect.com, and we'll try to add it to the collection.

Metaphors

W _ Our review of the new GUI in Apple's

xps % QuickTime 4.0 Player. Users of all Q

Books cunes operating systems should be concerned.

Links

Index

Bradbagk Selecting the wrong control for a task or Nobody likes a stupid computer, However,
Hall of F: “ il changing the way controls operate can often B many applications interrupt the user to ask stupid

result in an inefficient and frustrating questions, provide meaningless information, or

Contact Us application. require the user to make what should be an obvious

Improper design of the visual elements in an
application can often result in applications that are
difficult to read and difficult to use.

selection.

' The improper use color in an application can
seriously impede the usability of the application.

Monday, March 5, 12

Further questions

How to organize language design smells?
Use of software quality attributes (-ilities)?

Difference smell, bug, flaw, bad idea, ...?

Are DSLs special?

mailto:storm@cwi.nl
mailto:storm@cwi.nl

