
Language design smells
or: deconstructing language design (?)

Tijs van der Storm

Monday, March 5, 12

In several virtual computed GO TOs the DO FORGET #1 (statement 15 in the earlier example) has been
omitted, since the next transfer of control would be a DO RESUME #1. By making this a DO RESUME #2
instead, the FORGET may be forgotten.

In statement 64, note that .2 is STASHed twice by a single statement. This is perfectly legal.
Lastly, note in statements 243 and 214 respectively, expressions for shifting 16- and 32-bit variables

logically one place to the left. Statement 231 demonstrates right-shifting for 32-bit variables.

6.3 Program Listing

1 PLEASE KNOCK BEFORE ENTERING
2

3 (1000) PLEASE IGNORE .4
4 PLEASE ABSTAIN FROM (1005)
5 (1009) DO STASH .1 + .2 + .5 + .6
6 DO .4 <- #1
7 DO (1004) NEXT
8 (1004) PLEASE FORGET #1
9 DO .3 <- ’V-.1c/.2’~’#0c/#65535’

10 DO .6 <- ’&.1c/.2’~’#0c/#65535’
11 PLEASE DO .5 <- "V-!6~#32768’c/#1"~#3
12 DO (1002) NEXT
13 DO .4 <- #2
14 (1005) DO (1006) NEXT
15 (1999) DOUBLE OR SINGLE PRECISION OVERFLOW
16 (1002) DO (1001) NEXT
17 (1006) PLEASE FORGET #1
18 DO .5 <- ’V-"!6~.6’~#1"c/#1’~#3
19 DO (1003) NEXT
20 DO .1 <- .3
21 DO .2 <- !6c/#0’~’#32767c/#1’
22 DO (1004) NEXT
23 (1003) DO (1001) NEXT
24 DO REINSTATE (1005)
25 (1007) PLEASE RETRIEVE .1 + .2 + .5 + .6
26 DO REMEMBER .4
27 PLEASE RESUME #2
28 (1001) DO RESUME .5
29 (1010) DO STASH .1 + .2 + .4
30 DO .4 <- .1
31 DO .1 <- ’V-.2c/#65535’~’#0c/#65535’
32 DO (1020) NEXT
33 PLEASE DO .2 <- .4
34 PLEASE DO (1009) NEXT
35 DO RETRIEVE .1 + .2 + .4
36 PLEASE RESUME #1
37 (1020) DO STASH .2 + .3
38 DO .2 <- #1
39 PLEASE DO (1021) NEXT
40 (1021) DO FORGET #1
41 DO .3 <- "V-!1~.2’c/#1"~#3
42 PLEASE DO .1 <- ’V-.1c/.2’~’#0c/#65535’
43 DO (1022) NEXT
44 DO .2 <- !2c/#0’~’#32767c/#1’
45 DO (1021) NEXT

12

Monday, March 5, 12

Which one is better
designed?

Monday, March 5, 12

Why language design smells?

• More language design now than ever (DSLs)

• Teaching language design

• Body of knowledge

• Common vocabulary

• Making implicit knowledge of experts explicit

Monday, March 5, 12

Language as user interface

• NOT implementation

Monday, March 5, 12

Acta Informatica 11,287 - 304 (1979) nmrmuca
 9 by Springer-Verlag 1979

d o Considered od:
A Contribution to the Programming Calculus*

Eric C.R. Hehner
Computer Systems Research Group, University of Toronto, Toronto M5S 1A4, Canada

Summary. The utility of repetitive constructs is challenged. Recursive refine-
ment is claimed to be semantically as simple, and superior for programming
ease and clarity. Some programming examples are offered to support this
claim. The relation between the semantics of predicate transformers and
"least fixed point" semantics is presented.

Introduction

A major advance toward a useable programming calculus has been made by
Dijkstra [-1,2]. His syntactic tool is "guarded command sets", from which he
constructs an alternative, or IF, statement, and a repetitive, or DO, statement.
His semantic tool is "predicate transformers", which specify, for a given state-
ment S and post-condition R, the weakest pre-condition guaranteeing that S will
establish R. In this paper, we shall assume that the reader is familiar with the
above.

Our purpose is to offer some constructive criticisms of Dijkstra's approach.
In particular, we challenge the utility of the repetitive DO statement, and offer, in
its place, the notion of recursive refinement. Before the reader flees in panic from
the "s ledgehammer" tactics of replacing something as simple as repetition by
something as complicated as recursion, let us make our motivation plain. The
semantics of DO are by far the most complicated part of Dijkstra's rudimentary
language. Our purpose is to avoid complication as much as possible. By
contrast, we shall claim that recursive refinement introduces less semantic
complication to the language. Even more important, we shall claim that
programs composed using recursive refinement are simpler and clearer than
programs composed of DO statements. To support this claim, we shall present
some of the programming examples of [1]. It is intended that our programs be
compared with those in [1]. For the reader's convenience, we include the latter

* This work was partially supported by the National Research Council of Canada

0001-5903/79/0011/0287/$03.60

Eric C. R. Hehner, Acta Informatica, 11(4), 287-304, 1979

Monday, March 5, 12

Acta Informatica 11,287 - 304 (1979) nmrmuca
 9 by Springer-Verlag 1979

d o Considered od:
A Contribution to the Programming Calculus*

Eric C.R. Hehner
Computer Systems Research Group, University of Toronto, Toronto M5S 1A4, Canada

Summary. The utility of repetitive constructs is challenged. Recursive refine-
ment is claimed to be semantically as simple, and superior for programming
ease and clarity. Some programming examples are offered to support this
claim. The relation between the semantics of predicate transformers and
"least fixed point" semantics is presented.

Introduction

A major advance toward a useable programming calculus has been made by
Dijkstra [-1,2]. His syntactic tool is "guarded command sets", from which he
constructs an alternative, or IF, statement, and a repetitive, or DO, statement.
His semantic tool is "predicate transformers", which specify, for a given state-
ment S and post-condition R, the weakest pre-condition guaranteeing that S will
establish R. In this paper, we shall assume that the reader is familiar with the
above.

Our purpose is to offer some constructive criticisms of Dijkstra's approach.
In particular, we challenge the utility of the repetitive DO statement, and offer, in
its place, the notion of recursive refinement. Before the reader flees in panic from
the "s ledgehammer" tactics of replacing something as simple as repetition by
something as complicated as recursion, let us make our motivation plain. The
semantics of DO are by far the most complicated part of Dijkstra's rudimentary
language. Our purpose is to avoid complication as much as possible. By
contrast, we shall claim that recursive refinement introduces less semantic
complication to the language. Even more important, we shall claim that
programs composed using recursive refinement are simpler and clearer than
programs composed of DO statements. To support this claim, we shall present
some of the programming examples of [1]. It is intended that our programs be
compared with those in [1]. For the reader's convenience, we include the latter

* This work was partially supported by the National Research Council of Canada

0001-5903/79/0011/0287/$03.60

Eric C. R. Hehner, Acta Informatica, 11(4), 287-304, 1979

Monday, March 5, 12

"do Considered od" Considered Odder than "do Considered oh"

David Harel

IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

begin

Noticing that the exact reflection of "dO '~ is not "Od" but " o h " , we suggest in this one

sentence paper that the popular proposal of using symmetric pairs of keywords in programming

languages be followed to the letter, so to speak.

.igod

Referenees (Note: reference [1] is not cited in the text.)

[11 E. C. R. Hehner, "do Considered od : A Contribution to the Programming Calculus",

Acta Informatica 11, pp. 287-304 (1979).

David Harel, ACM SIGPLAN Notices, 15(4), 1980

Monday, March 5, 12

Richard Hamlet, ACM SIGPLAN Notices, 15(6), 1980

Monday, March 5, 12

-43-

do CONSIDERED REFLECTIVELY: A CONTRIBUTION TO GROUP PROGRAMMING

LeRoy Johnson
School of Computer Science

University of New Brunswick
Fredericton, N.B., Canada

In this one paragraph, we do extend the reflective work of Harel
[2]. Insightful as this work is we feel that Harel in his rush to pub-
lication was too quick to do the obvious; we further notice that the top
down reflection of do is qo and the compound Harel-Johnson reflection
gives op. The relationships of these do reflections are expressed in
Fig. l(a). It is not surprising that previous work is unnecessarily
restricted to one dimension since current use of the do is essentially
based on the linear line, however, we believe two dimensional programming
is now next in line for development, and this motivated our present para-
graph. Extension to higher dimensions does not appear fruitful if we
require closure in the Roman alphabet, thus, the remainder of this
paragraph is restricted to two dimensions. The observation so far might
be mere curiousity except for the fact that horizontal and vertical
reflection generate the Klein 4 group when it is realized that their
product on do is equivalent to a rotation of 180 ° on do. Interestingly,
the result of an even number of reflections on any element of Fig. l(a)
is independent of the order of reflection. In other words you can even
do programming without logical thinking, unless you are odd.

do v ob

qo v

V V

H H
R R

V H R

V H ! R

R I H

R % I V

H V I

(a) do symmetries in the alphabet (b) Klein 4 group

Figure i V - vertical reflection H - horizontal reflection
R - rotation 180 °

References

I Dijkstra, E.W., A Discipline of Programming. N.J.: Prentice-Hall,

1976
2 Harel, D., "do Considered od Considered Odder than do Considered ob".

SIGPLAN Notices Vol. 15, No. 4 (April 1980) pp. 75.
3 Hehner, E.C.R., "do Considered od: A Contribution to the Programming

Calculus", Acta Informatica ii, (1979) pp. 287-304.

Leroy Johnson, ACM SIGPLAN Notices, 15(12), 1980
Monday, March 5, 12

-44-

do CONSIDERED obVIOUSLY odd IN THREE DIMENSIONS

LeRoy Johnson
School of Computer Science
University of New Brunswick
Fredericton~ N.Bo, Canada

In this two paragraph paper, we hasten to extend both our
results and an appology to Harel for chiding him on his lack of reflec-
tion. The pot has called the kettle black, and~ indeed, potted we were
undoubtly when we penned our previous paper° In Johnson [4], we claimed
that extension of the do results to higher dimensions was not fruitful,
for instance a rotation of 90o takes do out of the Roman alphabet. This
incorrect assumption was due to a lack of reflection on our part. On
rereading the interchange between Harel [2] and Hehner [3] we were able
to decouple the confounding of reflection in the interchange and obtain
more solid results. Indeed no reflection is required to see that od is
the interchange of do.

S
• ~ Z

y x
I reflection on Y axis

i reflection on-X axis
Y

In Fig. 1 the interchange and reflection operations are
properly related in three dimensions. Clearly, do by prior use should
occupy the zero axis, thus an application of the mapping of Fig i. :to
do will generate the relationships depicted by the cube of Fig 2. It
is obvious that we can oddly enough also form the Klein 4 group of
Johnson [4] ~n od and that these two groups are related by interchange;
this then naturally extends the do mappings to three dimensions.
Extensions to dimensions higher than 3 appear computationally intractable
on paper, and we leave this to other researchers as an open problem, for
we can do no more. od

do

Fig. 1 Fig. 2 qo

/ bo

po

op
References

[I] Dijkstra, E.W., A Discipline of Programming. Prentice-Hall, 1976.

[2] Harel, David, "do Considered od Considered Odder than do Considered
ob", SIGPLAN Notices, Vol. 15, No. 4 (April 1980) pp. 75.

[3] Hehner, E.C.R., "do Considered od: A Contribution to the Programming
Calculus", Acta Informatica ii, (1979) pp. 287-304.

[4] Johnson, L.F. "do Considered Reflectively: A Contribution to Group
Programming", SIGPLAN Notices (to appear)

[5] Johnson, L.F. and R.H. Cooper, File Techniques for Data Base Organizatiorl
in COBOL. Englewood Cliffs, N.J.: Prentice-Hall, (in press).

Leroy Johnson, ACM SIGPLAN Notices, 15(12), 1980
Monday, March 5, 12

Bracketing Programme Construct s

i . G . Hun t

FRTA-4233, LGZ Landis Gyr Zug AG, CH-6301 Zug .

Amused by the Levity of {3} and annoyed by th e
attitude

of

{2},

I should like to make a seriou s
contribution to the do . .sod controversy .

In the realm of expressions of the traditional .
arithmetic kind, the use of brackets and parentheses L
clarify and disambiguate generally goes unchallenged .
Certainly for expressions of

Limited complexity th e
method usually works for the human reader :

whilst fo r
a machine free of problems of the psychology o
perception, greater depths of nesting present

n o
theoretical difficulty .

As Lisp and Algol-68 have shewn, the same metho d
may be applied to bracketing other programm e
constructs : yet the majority of human readers tend t)
find

this

Lacking in

clarity .

Lisp provides n<'
alternative, and has accordingly been much abused an d
reviled. Algol-68 permits the use of symmetric keywor d
pairs, such as comment . . .tnemmoc :

probably the on e
example of a symmetry which is not beautiful .

The origin of the controversy lies in th e
realisation that the method pioneered by Algol-•0 an y
adopted by many other Languages since, namely the us e
of begin . . .end pairs, suffers from the fact that ont o
END looks pretty much the same as any other : and whe n
a number of END''s occur in direct succession a
commonly observed phenomenon - it is difficult for a
human to match BEGIN's with ENO's and see how th e
programme is really structured . Even the technique o f
"prettyprint ing"

does not solve the proolem : for whe n

a compiler complains "Missing ENO" the programmer stil t
has to determine which construct has been incorrectl y
terminated .

J. G. Hunt, ACM SIGPLAN Notices, 16(4), 1981
Monday, March 5, 12

Bracketing Programme Construct s

i . G . Hun t

FRTA-4233, LGZ Landis Gyr Zug AG, CH-6301 Zug .

Amused by the Levity of {3} and annoyed by th e
attitude

of

{2},

I should like to make a seriou s
contribution to the do . .sod controversy .

In the realm of expressions of the traditional .
arithmetic kind, the use of brackets and parentheses L
clarify and disambiguate generally goes unchallenged .
Certainly for expressions of

Limited complexity th e
method usually works for the human reader :

whilst fo r
a machine free of problems of the psychology o
perception, greater depths of nesting present

n o
theoretical difficulty .

As Lisp and Algol-68 have shewn, the same metho d
may be applied to bracketing other programm e
constructs : yet the majority of human readers tend t)
find

this

Lacking in

clarity .

Lisp provides n<'
alternative, and has accordingly been much abused an d
reviled. Algol-68 permits the use of symmetric keywor d
pairs, such as comment . . .tnemmoc :

probably the on e
example of a symmetry which is not beautiful .

The origin of the controversy lies in th e
realisation that the method pioneered by Algol-•0 an y
adopted by many other Languages since, namely the us e
of begin . . .end pairs, suffers from the fact that ont o
END looks pretty much the same as any other : and whe n
a number of END''s occur in direct succession a
commonly observed phenomenon - it is difficult for a
human to match BEGIN's with ENO's and see how th e
programme is really structured . Even the technique o f
"prettyprint ing"

does not solve the proolem : for whe n

a compiler complains "Missing ENO" the programmer stil t
has to determine which construct has been incorrectl y
terminated .

J. G. Hunt, ACM SIGPLAN Notices, 16(4), 1981
Monday, March 5, 12

Bracketing Programme Construct s

i . G . Hun t

FRTA-4233, LGZ Landis Gyr Zug AG, CH-6301 Zug .

Amused by the Levity of {3} and annoyed by th e
attitude

of

{2},

I should like to make a seriou s
contribution to the do . .sod controversy .

In the realm of expressions of the traditional .
arithmetic kind, the use of brackets and parentheses L
clarify and disambiguate generally goes unchallenged .
Certainly for expressions of

Limited complexity th e
method usually works for the human reader :

whilst fo r
a machine free of problems of the psychology o
perception, greater depths of nesting present

n o
theoretical difficulty .

As Lisp and Algol-68 have shewn, the same metho d
may be applied to bracketing other programm e
constructs : yet the majority of human readers tend t)
find

this

Lacking in

clarity .

Lisp provides n<'
alternative, and has accordingly been much abused an d
reviled. Algol-68 permits the use of symmetric keywor d
pairs, such as comment . . .tnemmoc :

probably the on e
example of a symmetry which is not beautiful .

The origin of the controversy lies in th e
realisation that the method pioneered by Algol-•0 an y
adopted by many other Languages since, namely the us e
of begin . . .end pairs, suffers from the fact that ont o
END looks pretty much the same as any other : and whe n
a number of END''s occur in direct succession a
commonly observed phenomenon - it is difficult for a
human to match BEGIN's with ENO's and see how th e
programme is really structured . Even the technique o f
"prettyprint ing"

does not solve the proolem : for whe n

a compiler complains "Missing ENO" the programmer stil t
has to determine which construct has been incorrectl y
terminated .

J. G. Hunt, ACM SIGPLAN Notices, 16(4), 1981
Monday, March 5, 12

Today

• What is good language design.

• NOT: What is a good language?

• Can we explain good language design?

• Approach this question from the other side

• language design smells

Monday, March 5, 12

http://c2.com/cgi/wiki?CodeSmell

Monday, March 5, 12

http://c2.com/cgi/wiki?CodeSmell
http://c2.com/cgi/wiki?CodeSmell

http://c2.com/cgi/wiki?CodeSmell

Symptom of deeper issues (maybe)

Monday, March 5, 12

http://c2.com/cgi/wiki?CodeSmell
http://c2.com/cgi/wiki?CodeSmell

http://c2.com/cgi/wiki?CodeSmell

Does not affect user of software, but programmer

Symptom of deeper issues (maybe)

Monday, March 5, 12

http://c2.com/cgi/wiki?CodeSmell
http://c2.com/cgi/wiki?CodeSmell

Smell Example

“Duplicated code”

public boolean checkGameOver(Graphics g2) {
 g2.setColor(Color.RED);

 if (this.player1.getHealth() < 0) {
 g2.drawString("Game Over, winner: " +
 this.player1.getName(), SCREEN_PADDING,
 PLAYER_HEIGHT + 250);
 return true;
 }

 if (this.player2.getHealth() < 0) {
 g2.drawString("Game Over, winner: " +
 this.player2.getName(), SCREEN_PADDING,
 PLAYER_HEIGHT + 250);
 return true;
 }
 return false;
}

Monday, March 5, 12

Language Design Smell
A language design smell is a hint that something has
gone wrong somewhere in your language design.

Monday, March 5, 12

Language Design Smell
A language design smell is a hint that something has
gone wrong somewhere in your language design.

Does affect user (= programmer)

Monday, March 5, 12

Language Design Smell
A language design smell is a hint that something has
gone wrong somewhere in your language design.

Does affect user (= programmer)

[Parallel to user interface design smells]

Monday, March 5, 12

Cf. VBA Language Specification, Microsoft Corporation, Release: March 15, 2010, p. 56-57

http://msdn.microsoft.com/en-us/library/aa266180(v=vs.60).aspx

Visual Basic 6

Monday, March 5, 12

http://msdn.microsoft.com/en-us/library/aa266180(v=vs.60).aspx
http://msdn.microsoft.com/en-us/library/aa266180(v=vs.60).aspx

JavaScript block scoping
function f() {
 var i = 13;
 {
 var i = 42;
 print(i);
 }
 print(i);
}

http://oreilly.com/javascript/excerpts/javascript-good-parts/awful-parts.html
http://matt.might.net/articles/javascript-warts/
https://github.com/spencertipping/js-in-ten-minutes

Monday, March 5, 12

http://oreilly.com/javascript/excerpts/javascript-good-parts/awful-parts.html
http://oreilly.com/javascript/excerpts/javascript-good-parts/awful-parts.html
http://matt.might.net/articles/javascript-warts/
http://matt.might.net/articles/javascript-warts/
https://github.com/spencertipping/js-in-ten-minutes
https://github.com/spencertipping/js-in-ten-minutes

JavaScript block scoping
function f() {
 var i = 13;
 {
 var i = 42;
 print(i);
 }
 print(i);
}

http://oreilly.com/javascript/excerpts/javascript-good-parts/awful-parts.html
http://matt.might.net/articles/javascript-warts/
https://github.com/spencertipping/js-in-ten-minutes

prints: 42 42

Monday, March 5, 12

http://oreilly.com/javascript/excerpts/javascript-good-parts/awful-parts.html
http://oreilly.com/javascript/excerpts/javascript-good-parts/awful-parts.html
http://matt.might.net/articles/javascript-warts/
http://matt.might.net/articles/javascript-warts/
https://github.com/spencertipping/js-in-ten-minutes
https://github.com/spencertipping/js-in-ten-minutes

Smell Example Manifestation

“Counter
intelligence”

JavaScript blocks
appear to introduce
new scopes, but they

don’t.

function f() {
 var i = 13;
 {
 var i = 42;
 print(i);
 }
 print(i);
}
// prints 42 42

Monday, March 5, 12

Language design smell
= ...?

• Domain independent

• Language independent

• Fixable

• Unnecessary

• Debatable (trade-offs)

• Net negative

• Accidental

• Wicked

• Arbitrary

• Circumstantial

• Unintended

Monday, March 5, 12

Smell vs feature
FeatureSmell

contingent motivated
unnecessary
irrational
accidental

intentional

rational

structuralad hoc
essential

arbitrary

required

centralfringe
consequence decision

negative positive

Monday, March 5, 12

Monday, March 5, 12

Research agenda

• Literature survey (annotated bibliography?)

• Catalogue of smells (Wiki? Taxonomy?)

• Language design (anti-)patterns?

• Language critiques?

• Language scholarship?

• http://www.languagedesign.org

Monday, March 5, 12

http://www.languagedesign.org
http://www.languagedesign.org

PL Hall of Shame

Monday, March 5, 12

Further questions

• How to organize language design smells?

• Use of software quality attributes (-ilities)?

• Difference smell, bug, flaw, bad idea, ...?

• Are DSLs special?

What’s your favorite language wart?

storm@cwi.nl
Monday, March 5, 12

mailto:storm@cwi.nl
mailto:storm@cwi.nl

