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My Background
● Clovers (Lynn Stein et al.): 

Inheritance using delegation, using CLOS MOP.

● Id (Nikhil & Arvind):
○ Implicitly-parallel functional programming language
○ Hindley-Milner, algebraic types, ML-ish syntax

● pH (parallel Haskell):
○ Id with Haskell syntax & type system.

● Making trouble about Java Memory Model
● Eager Haskell

○ Haskell via resource-bounded eager evaluation
● Fortress

○ Implicit parallelism, immutability
● Now: help Make The Web Faster



My Biases

● Libraries central to programmer's day-to-day 
experience of a language
○ Java collection classes
○ C++ STL
○ JavaScript DOM interface
○ Design language to enable tasteful libraries

 
● Really interested in parallelism

○ Including lock-free and wait-free algorithms
 
● I'm a functional programmer at heart





Indexed Collections

Arrays
 
 
Finite Maps
 
 
Sets
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Indexing Collections with Collections
inconsistent :: Region -> Puzzle -> Bool
inconsistent roi p =
    any isEmpty [ p[c] | c <- elements roi]
 
inconsistent :: Region -> Puzzle -> Bool
inconsistent roi p =
    any isEmpty p[roi]
 



What I think I want

● Preserve structure of indexing collection
○ Here, indexing an array with a set yields a set

● Question: what to do when the elements of 
the collection indexed don't support creation 
of something like the indexed collection?
○ Example: no equality predicate on array elements, 

can't create a set.
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Consider sets to have identical keys and values
Preserve the key space of indexing collection

What may be more sensible
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Seems to work for maps as well
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● Treatment of absent indices?  Array vs set?
● Type of the indexing operation?

○ Not everything is a collection
○ Natural index type, and collections of indices

● Who is responsible for implementation?
○ Is this just a map over the indexing collection?
○ Beat O(m log n) when indexed collection is a tree

● Should we materialize the collection at all?
  inconsistent :: Region -> Puzzle -> Bool
  inconsistent roi p =
      any isEmpty p[roi]

Questions



Another example
removeSingletons :: Region -> Puzzle -> (Region, Puzzle)
removeSingletons roi p = (roi', p')
  where singletons =
            set [ c | c <- elements roi, size (p!c) == 1 ]
        elims =
            accumArray union empty puzzleBounds
                [ co | c <- elements singletons,
                       v <- elements (p!c),
                       co <- crossOuts c v ]
        p' = arrayZipWith difference p elims
        roi' = unions [ regions!c | c <- elements 
singletons]



Combining corresponding indices
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And again on maps
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Questions

● Notation?
○ zip / zipWith are kind of terrible
○ Join operator?  What about zipWith?
○ This is potentially an n-ary operation

● Return type?
○ Both args dense / both args sparse obvious...
○ First arg dense, second sparse?
○ First arg sparse, second dense?
○ Different kinds of sparse map (hash vs tree)

● Who's driving the operation?
○ Tricky again in non-uniform case
○ Keep the asymptotic complexity low & predictable

● Should we materialize?



How I got into this

● Treatment of zip on Fortress collections
 
● Database-style join operations

○ With predictable preformance
○ With notation that reflects operational behavior

 
● Array languages

○ Ability to index arrays with ranges:
     a[2:17,3:19:2]



Preliminary Decisions

● Put the rightmost collection in charge
 
● Permit specialization of operations

○ Multimethod dispatch helps a lot here
 
● Don't materialize the results


