

Small is Beautiful: the design
of Lua

Roberto Ierusalimschy

PUC-Rio

function fact (n)
 if n == 0 then
 return 1
 else
 return n * fact(n - 1)
 end
end

function fact (n)
 local f = 1
 for i=2,n do
 f = f * i
 end
 return f
end

An overview of Lua

• Conventional syntax
• somewhat verbose

An overview of Lua

• semantically somewhat similar to
Scheme
• follows Section 1.1, Semantics, of Revised

(5) report on Scheme, except for
continuations and numbers

• dynamically typed
• all objects have unlimited extent
• functions are first-class values with static

scoping
• proper tail recursive

BTW...
function fact (n)
 local f = 1
 for i=2,n do f = f * i; end
 return f
end

fact = function (n)
 local f = 1
 for i=2,n do f = f * i; end
 return f
 end

syntactic sugar

An overview of Lua

• numbers are doubles
• Lua does not have full continuations, but

have one-shot continuations
• in the form of coroutines

Design

• tables
• coroutines

Tables

• associative arrays
• any value as key

• only data-structure mechanism in Lua

Why tables

• VDM: maps, sequences, and (finite) sets
• any one can represent the others
• only maps represent the others with

simple and efficient code

Data structures

• tables implement most data structures in
a simple and efficient way

• records: syntactical sugar t.x for
t["x"]:

t = {}
t.x = 10
t.y = 20
print(t.x, t.y)
print(t["x"], t["y"])

Data Structures

• arrays: integers as indices

• sets: elements as indices

a = {}
for i=1,n do a[i] = 0 end

t = {}
t[x] = true -- t = t ∪ {x}
if t[x] then -- x ∈ t?
 ...

Other constructions

• tables also implement modules
• print(math.sin(3))

• tables also implement objects
• with the help of a delegation mechanism and

some syntactic sugar

function a:foo (x)
 ...
end

a.foo = function (self,x)
 ...
end

a:foo(x) a.foo(a,x)

Objects

• first-class functions + tables ≈ objects
• syntactical sugar for methods

• handles self

Delegation

• field-access delegation (instead of
method-call delegation)

• when a delegates to b, any field absent
in a is got from b
• a[k] becomes (a[k] or b[k])

• allows prototype-based and class-based
objects

• allows single inheritance

Delegation at work

a:foo(x) a.foo(a,x)

a:
k = 0
delegate:

"class":
foo = function ...

Tables: problems

• the implementation of a concept with
tables is not as good as a primitive
implementation
• access control in objects
• length in sequences

• different implementations confound
programmers
• DIY object systems

Coroutines

• old and well-established concept, but
with several variations

• variations not equivalent
• several languages implement restricted

forms of coroutines that are not equivalent to
one-shot continuations

Coroutines in Lua

c = coroutine.create(function ()
 print(1)
 coroutine.yield()
 print(2)
 end)

coroutine.resume(c) --> 1
coroutine.resume(c) --> 2

Coroutines in Lua

• first-class values
• in particular, we may invoke a coroutine from

any point in a program

• stackful
• a coroutine can transfer control from inside

any number of function calls

• asymmetric
• different commands to resume and to yield

Coroutines in Lua

• simple and efficient implementation
• the easy part of multithreading

• first class + stackful = complete
coroutines
• equivalent to one-shot continuations
• we can implement call/1cc

• coroutines present one-shot
continuations in a format that is more
familiar to most programmers

Asymmetric coroutines

• asymmetric and symmetric coroutines
are equivalent

• not when there are different kinds of
contexts
• integration with C

• how to do a transfer with C activation
records in the stack?

• resume fits naturally in the C API

Coroutines x continuations

• most uses of continuations can be coded
with coroutines
• “who has the main loop” problem

• producer-consumer
• extending x embedding

• iterators x generators
• the same-fringe problem

• collaborative multithreading

Coroutines x continuations

• multi-shot continuations are more
expressive than coroutines

• some techniques need code
reorganization to be solved with
coroutines or one-shot continuations
• oracle functions

Conclusions

• to get simplicity we must give something
• performance, easy of use, particular

features, libraries

•

• “Mechanisms instead of policies”
• e.g., OO model
• effective way to avoid tough decisions
• this itself is a decision...

www.lua.org

	Small is Beautiful: the design of Lua
	An overview of Lua
	Slide 3
	BTW...
	Slide 5
	Design
	Tables
	Why tables
	Data structures
	Data Structures
	Other constructions
	Objects
	Delegation
	Delegation at work
	Tables: problems
	Coroutines
	Coroutines in Lua
	Slide 18
	Slide 19
	Slide 20
	Coroutines x continuations
	Slide 22
	Slide 23
	Slide 24

