

Trust the clones — What?

* Cloning of objects requires cloning of some (not all)
fields of that object —sheep cloning.

* Therefore, programmer needs to write custom
cloning code for each class; this is tedious, error-
prone boilerplate code.

* We propose annotations of the field declarations,
and that be used to generate the code.

Contents of the talk

Example of sheep cloning

Annotating code with cloning information

— Path Types

— Cloning Domains

Generation of the cloning methods

— The cloning method for the Node example
— The cloning method in general

Properties of Cloning Methods

Contents of the talk

Example of sheep cloning

Annotating code with cloning information

— Path Types

— Cloning Domains

Generation of the cloning methods

— The cloning method for the Node example
— The cloning method in general

Properties of cloning methods

Example: assuming following objects

1: Union

lstudents

2: StudentList

\ head
next

3: Node > 4: Node

lstudent l student

5: Student 6: Student

Example: ... described by following classes

class Union{
StudentlList students;

1: Union Union clone () { ?27?27?2 }
l }
students
class StudentList/{
2: StudentList Node head;
\\mead StudentList clone ()
next { 27272 }
3: Node —>| 4: Node J
class Node{
lstudent l student Node next;

5: Student 6: Student Student student;
Node clone () { ?27?27? }

}

class Student({
Student clone(){ ?2?27? }

6

Example: assume that cloning 3, just
duplicates 3

1: Union

lstudents

2: StudentList

\ head
next next
3: Node —>| 4: Node <€ i 3’: Node \

lstudent 1 student

5: Student 6: Student

Example: assume that cloning 2,
duplicates 2, 3, 4

1: Union

lstudents

2: StudentlList | 2": StudentList \
\ head \mad
next next

3: Node > 4: Node 3’: Node

lstudent

5: Student 6: Student

Example: assume that cloning 1, duplicates 1, 2, 3,4, 5, 6

1: Union

lstudents

2: StudentList

\ head
next

1’: Union

3: Node —>

4: Node

lstudent

l student

5: Student

6: Student

l students
| 2’: StudentList \

Nwead
next

3’: Node

5’: Student

4’: Node

student

6’: Student

So, how can we write clone () so that

e 1.clone ()
duplicates 1, 2, 3,4, 5, 6

1: Union

1students 2.clone ()

2: StudentList duplicates 2, 3, 4

\ head
next

3: Node > 4: Node

3.clone ()
duplicates 3, and

lstudent l student 4.clone ()
duplicates 4

5: Student 6: Student

S.clone ()
duplicates 5, and

6.clone ()
duplicates 6

So, how can we write clone () ?

1: Union

“ % » .
lstudents Naive” Approach:

Write a different clone ()
method per class which

\ head et “navigates” the structure, as
3 Node 3| 4: Node needed for cloning.

lstudent l student

5: Student 6: Student

2: StudentList

11

So, how can we write clone () ?

1: Union

lstudents

2: StudentList

\\\ahead
next

3: Node —>

4: Node

lstudent

l student

5: Student

6: Student

Therefore, the method clone ()
read the Node's fields. This exposes the internals of class

Node to class Union.

“Naive” Approach:
Write a different clone ()
method per class which
“navigates” the structure, as
needed for cloning.

from class Union would

® 6 6

12

So, how can we write clone () ?

“Better” Approach:
1: Union Write one clone () method
lstudents per class and provide it with

some context, so that it knows
how much to duplicate. This

2: StudentList

\ head oxt method will contain further calls
3:Node ——>! 4: Node of clone () on some of object’s
fields and provide appropriate
lstudent 1 student context.

5: Student 6: Student

13

So, how can we write clone () ?

1: Union

lstudents

2: StudentList

\\\;head
next

3: Node —>

4: Node

1student

“Better” Approach:

Write one clone () method
per class and provide it with
some context, so that it knows
how much to duplicate. This
method will contain further calls
of clone () on some of object’s
fields and provide appropriate

l studentcontext.

5: Student

6: Student

For example, Node will have three versions of clone () : one
when the “originator” is itse1f; one when the originator is a

StudentList; and one when the originator is a Union.

14

So, how can we write clone () ?

1: Union

lstudents

2: StudentList

\ head
next

3: Node > 4: Node
lstudent l’student
5: Student 6: Student

Our Approach:

A mechanism for the generation
of clone methods.

Use annotations to indicate

object membership to cloning
domains.

15

So, how can we write clone () ?

1: Union

lstudents

2: StudentList

\ head
next

3: Node > 4: Node
lstudent 1 student
5: Student 6: Student

Our Approach:

A mechanism for the generation
of clone methods.

Use type annotations to indicate
object membership to cloning

domains.

In other words, put objects into
boxes.

16

'''''''

Flexible Alias Protection

James Noble!, Jan Vitek®, and John Potter!

! Microsoft Research Institute, Macquarie University, Sydney
kjx,potterfori.mg.edu. au
* Object Systems Group, Université de Genéve, Ceneva,
Jan.Vitek@cui.unigs.ch

Abstract. Aliasing is endemic in object oriented programming. Because
an object can be modified via any alias, object oriented programs are
hard to understand, maintain, and analyse. Flezible alias profection 15 a
conceptual model of mter-object relationships which hmits the visibility
of changes via aliases, allowing objects to he aliased but mitigating the
undesirable effects of aliasing. Flexible alias protection can be checked
statically using programmer supplied aliasing modes and imposes no run-
time overhead. Using flexable alias protection, programs can incorporate
mutable objects, immutable values, and updatable collections of shared
ohjects, in a natural object ortented programming style, while avoiding
the problems caused by aliasing.

1 Introduction
I am wha I am; T will be who T will be.

Object identity is the foundation of ohject oriented programming. Objects are
useful for modelling application domain abstractions precisely because an ob-
ject’s identity always remains the same during the execution of a program —

Boxes owned by objects...

Each object is owned by another
object.

Each owner has a set of objects it
owns.

The ownership relation therefore
introduces a tree hierarchy.

p 1:A4\
3:B
o /

4:B

The flavours of owners ...

 Owners as dominators
(for encapsulation,
garbage collection)

 Owners as modifiers
(for reasoning; invariant
depends on owned objects)

1: A

an)
o

The flavours of owners ...

Owners as dominators
(for memory management,
encapsulation)

Owners as modifiers
(for reasoning; invariant
depends on owned objects)

Owners for software architecture

Owners for effects
(for concurrency, reasoning)

p 1:A4\
&
o %
1:A4\
d
%

The flavours of owners ...

Owners as dominators
(for memory management,
encapsulation)

Owners as modifiers
(for reasoning; invariant
depends on owned objects)

Owners for software architecture

Owners for effects
(for concurrency, reasoning)

and more ...

p 1:A4\
,l
o %
1:A4\
d
%

Contents of the talk

Example of sheep cloning
Annotating code with cloning information
— Path Types
— Cloning Domains
Generation of the cloning methods
— The cloning method for the Node example
— The cloning method in genera;
Properties of cloning methods
What the underlying language must provide
Conclusions

Putting objects into boxes ...

1: Union

///’ lstudents

N

2: StudentList

3: Node

student

\\\\‘ 5: Student

4: Node

student

6:Student4’///

23

Putting objects into boxes ...

1: Union

S D

2: StudentList

student student
K 5: Student 6: Student/
means that

1 3 and 4 belong to the cloning domain of 2.
2, 3,4,5and 6 belong to the cloning domain of 1.

Putting objects into boxes ...

class Union<c>{
StudentList<this> students;
Union clone(){ 27?27?2 }

1: Union

}
//// lstudents \\\\\

class StudentlList<ec>{

2: StudentList Node<this, ¢> head;

StudentList clone ()
{ 27272 }

class Node<cl, c2>{
student student Node<cl, c2> next;

Student<ec2> student;

\ 5: Student 6: Student/ Node clone(){ 22?2 }
}

class Student<e> {
Student clone(){ 2?27 }

25

Putting objects into boxes ...

class Union<c>({
StudentlList<this> students;
1: Union Union clone () { 22?2 }

}
/// lsumenw ‘\\\\class StudentList<c>({

Node<this, ¢> head;

StudentList clone ()
{ 2272 }

2: StudentList

}

class Node<cl, c2>{
Node<ecl, c2> next;
Student<c2> student;

student Node clone(){ 227 }

}

\\\\ 5: Student 61&”de”t4////class Student<c> |
Student clone(){ 2?27?72 }

means that }
(d this.students is inside the cloning domain of this,
when in Union.

student

26

Putting objects into boxes ...

class Union<c>({
StudentlList<this> students;
1: Union Union clone () { 22?2 }

}
/// lSUMenB \\\\class StudentList<c>({

Node<this, ¢> head;

StudentList clone ()
{ 2272 }

2: StudentList

}

class Node<ecl, c2>{
Node<ecl, c2> next;
Student<ec2> student;

student Node clone(){ 227 }

}

\\\\ 5: Student 6:&mdentl////class Student<c> |
Student clone(){ 2?27?72 }

means that }
(d this.students is inside the cloning domain of this,
when in Union.
d Therefore, when 1 is cloned, 2 has to be cloned too. 27

student

Path Types - definition

class C(cy,...ca){ ... }
Ct this : C{c1,...Cn)

class D(cy,...cn){ ... E(api,...apn) f ... }
Ct this.f : D(capi,...capu)

CF this.f.f : E{api,...apa[capi,...capn/C1, ...Cy|[this.f /this])

Fig. 4. Path types for paths

e A path has the form this.f1.....fn.

* |ts type gives the path that leads to its owner (and
the remaining cloning parameters).

28

Path Types — example

Union
Union

1: Union

P

lstudents

2: StudentList

N

3: Node 4: Node
student
\\\\‘ 5: Student 6:Student4’///
| - this.students StudentList<this>

| - this.studentlList.head.student : Student<this>

29

Cloning domains — definition

Cl;LDom(C) = { thi's-} U{pf|C - i).f : D(p’,...) for a class D, and a path p’,
and where p € ClnDom(C) }

* The cloning domain of a class is the (infinite) set of
paths whose type indicates that the corresponding
object has to be cloned when this is cloned.

30

Cloning Domains — example

1: Union

P

-

lstudents

2: StudentList

N

3: Node

student

5: Student

4: Node

6:Student4’///

ClnDom (Union) =

{ this, this.students,
this.students.head,
this.head.studetns.nextx,
this.head.studetns.next*.student }

31

Contents of the talk

Example of sheep cloning

Annotating code with cloning information

— Path Types

— Cloning Domains

Generation of the cloning methods

— The cloning method for the Node example
— The cloning method in general

Conclusions

The Node: :clone ()

class Node<cl, c2>{

Node<ecl, c2> next; Student<ec2> student;

method

//,—— 1: Union
istudents

2: StudentList

3: Node

student

4: Node

student

\\\¥ 5: Student

6: Student

The Node: :clone ()

class Node<cl, c2>{

Node<ecl, c2> next;

Node clone () {

Y

this.clone (false,

method

Student<ec2> student;

false, new IdentityHashMap ()

1: Union

istudents

2: StudentList

3: Node

student

5: Student

4: Node

student

6: Student

The Node: :clone () method

class Node<cl, c2>{
Node<ecl, c2> next; Student<ec2> student;
Node clone () {
this.clone (false, false, new IdentityHashMap ()
} 7
Node clone (bool sl1l, bool s2, Map m) {
Object n=m.get (this);
if (n'!'=null){ return (Node)n; }

/— 1: Union \

l'students
2: StudentList

student student

k 5: Student 6: Student /

The Node: :clone () method

class Node<cl, c2>{
Node<ecl, c2> next; Student<ec2> student;
Node clone () {
this.clone (false, false, new IdentityHashMap ()
} 7
Node clone (bool sl1, bool s2, Map m) {
Object n=m.get (this);
if (n!=null){ return (Node)n; }

Node clone = new Node(); m.put(clone);
clone.next= sl1? this.next.clone(sl,s2,m) : this.next;
clone.student =

s27? this.student.clone(s2,m) : this.student;

return clone;

/— 1: Union \

‘l'students
2: StudentList

student student

K 5: Student 6: Student /

The Node: :clone () method

class Node<cl, c2>{
Node<ecl, c2> next; Student<ec2> student;

Node clone (bool sl1l, bool s2, Map m) {

Node clone = new Node(); m.put(clone);
clone.next= sl? this.next.clone(sl,s2,m)

this.next;
clone.student =

s2? this.student.clone(s2,m) : this.student;
return clone;

/— 1: Union \

l'stu ents
3.clone (false, false, m) [Zsumis
duplicates 3

:

student student

k 5: Student 6: Student /

The Node: :clone () method

class Node<cl, c2>{
Node<ecl, c2> next; Student<ec2> student;

Node clone (bool sl1l, bool s2, Map m) {

Node clone = new Node(); m.put(clone);
clone.next= sl? this.next.clone(sl,s2,m)

this.next;
clone.student =

s2? this.student.clone(s2,m) : this.student;
return clone;

/— 1: Union \

l'students
3 . Clone (true F false p m) 2: StudentList
duplicates 3 and 4. '
student student

k 5: Student 6: Student /

The Node: :clone () method

class Node<cl, c2>{
Node<ecl, c2> next; Student<ec2> student;

Node clone (bool sl1l, bool s2, Map m) {

Node clone = new Node(); m.put(clone);
clone.next= sl? this.next.clone(sl,s2,m)

this.next;
clone.student =

s2? this.student.clone(s2,m) : this.student;
return clone;

/ 1: Union \

1' students
3.clone (true, true, m) 2: Studenttist

duplicates 3, 4, 5 and ©.

The C: :clone () method -in general

C clone(Boolean s;...Boolean sy, Map m){

Object o = m.get(this)

if o # null then
return (C)o;

else{
C o’ =new C();
m.put(this, o’);
o'.f; =s;,; ? this.f;.clone(s, ,...81k1,m) : this.fy;

o'.fn = sn,1 ? this.f,.clone(s,, ;...8n,kn,m) : this.fn;
return o’;

}

where
{£1,...£,} are the fields defined in class C

and where, for all i € 1..n :
(fType(C(si...8n), f1))[true/this|=C;i(Si 1...8:1 ki)
for some classes Ci,.. C.

40

Contents of the talk

Example of sheep cloning

Annotating code with cloning information

— Path Types

— Cloning Domains

Generation of the cloning methods

— The cloning method for the Node example
— The cloning method in genera;

Properties of cloning methods

Conclusions

Guarantees of cloning

v'Termination: any call of o.clone () terminates.

v'Soundness: all objects from the cloning domain are
duplicated.

v’ Isomorphism the new objects form a structure that
is isomorphic to that in the cloning domain, provided
that owners are “points of no return.”

42

Owner as “point of no return”

e Pointers into a box are allowed.

O:F

™

p 1: A

2:B

_

=

3:B
J’ /\
5:D

%

43

Owner as “point of no return”

* Pointers into a box are allowed, provided no path
exits and then re-enters a box.

O:F W /;y 2:B

1 3:B

p- 1. A /
4:C 5:D

- /

* We can check this statically.

Owner as “point of no return”

* Pointers into a box are allowed, provided no path
exits and then re-enters a box.

O:F

w 7 2:B
- 3:B
p 1: A rd
J’ /\
4:C 5:D
o %

v'Isomorphism: the new objects form a structure isomorphic to
that in the cloning domain, provided owners are “points of no

return.”

45

Contents of the talk

Example of sheep cloning

Annotating code with cloning information

— Path Types

— Cloning Domains

Generation of the cloning methods

— The cloning method for the Node example
— The cloning method in genera;

Properties of cloning methods

Conclusions

Conclusions

* Ownership-like
types are cool.

e Cloning methods
can be generated.

e “Point of no return”

new flavour of OTs.

47

Conclusions

* Ownership-like
types are cool.

e Cloning methods
can be generated.

=

* “Point of no return”
new ﬂavour of OTS ,,,,‘/

3334

\

%
\\
% : Ve
L\ L\

48

