
Thursday, December 6, 12

Orthogonality

• Rascal, a heartbreaking work of staggering
genius ;-)

• Some mistakes we have made...

• or we are about to make...

• or not...

• have to do with orthogonality...

Thursday, December 6, 12

IFIP WG 2.1, October 1965

Thursday, December 6, 12

Thursday, December 6, 12

Algol 68

• procedures as params

• values as params

• values can be assigned

• so procedures can be assigned.

Thursday, December 6, 12

Cartesian product

assign pass

expr

proc

yes yes

? yes

Thursday, December 6, 12

I .7--- _ _.--_ - l

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
‘ MEMO AIM-224

‘STAN-CS-73-403 ’ . --_”‘,- _ .- _ ’

HINTS ON PROGRAMMING LANGUAGE DESIGN

BY

C. A. R. HOARE

-=
SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
. ARPA ORDER NO. 24~4

PROJECT CODE 3D30

DECEMBER 1973 --- __ .-_ .--

COMPUTER SCIENCE DEPARTMENT
/ SC hool of Humanities and Scrences

ANFORD UNIVERSITY3

Thursday, December 6, 12

L

3. Discussion

The previous two sections have argued that the objective criteria

e

L

L

\

for good language design may be summarized in five catch phrases:

simplicity, security, fast translation, efficient object code, and. .
readability. However desirable these may seem, many language designers

have

some

have

3.1

adopted alternative principles which belittle the importance of

or all of these criteria , perhaps those which their own languages

failed to achieve.

Simplicity

Some language designers have replaced the objective of simplicity

by that of modularity, by which they mean that a programmer who cannot

understand the whole of his language can get by with a limited under-

standing of only part of it. For programs that work as the programmer

intended this may be feasible; but if his program does not work, and

accidentally invokes some feature of the language which he does not know,

he will get into serious trouble. If he is lute, the implementation

will detect his mistake, but he will not be able to understand the diagnostic

message. Otherwise, he is even more helpless. If to the complexity

of his language is added the complexity of its implementation, the

complexity of its operating environment, and even the complexity of

institutional standards for the use of the language, it is not surprising

that when faced with a complex programming task so many programmers are

overwhelmed.

Another replacement of simplicity as an objective has been

orthogonality of design. An example of orthogonality is the provision

of complex integers, on the argument that we need reals and integers and

complex reals, so why not complex integers? In the early days of hardware

design, some very ingenious but arbitrary features turned up in order

codes as a result of orthogonal combinations of the function bits of an

instruction, on the grounds that some clever programmer would find a use

for them, -- and some clever programmer always did. Hardware designers

have now learned more sense; but language designers are clever programmers

and have not.

Thursday, December 6, 12

Thursday, December 6, 12

Thursday, December 6, 12

Backfiring orthogonality

In order to understand it, we rewrite the definition of input by adding spaces comments and newlines.
(Note that we have not included a at the end of every line which is required if a macro definition is
spread across many lines in C.)

The complete body of the above macro is just an expression. However, many actions have been packed
into this expression making it very complicated.

2. The Algol 68 extreme . . .

This is a still more complicated example in which even the left hand side of an assignment can be
selected conditionally. Further a value in an expression can be selected by using the control construct

and the condition that is tested may have an assignment operation in it!
This example highlights the pitfalls of allowing all possible combinations.

The tradeoff between simplicity and orthogonality is hard to quantify. What is clear is that a good
language must possess both the “virtues”. What is not clear is the extent to which orthogonality should be
supported. Opinions may differ on the limit after which orthogonality ceases to be a virtue and becomes a
vice!

7 Expressiveness

Machine language programs are hard to understand due to the low expressive power of machine instructions.
Expressiveness of a language is a measure of how naturally a problem solving strategy can be mapped into

14

Algol 68

Thursday, December 6, 12

HUMAN-COMPUTER INTERACTION, 1989, Volume 4, pp. 95-120
Copyright O 1989, Lawrence Erlbaum Associates, Inc.

Testing the Principle of Orthogonality
in Language Design

Edward M. Bowden, Sarah A. Douglas, and
Cathryn A. Stanford

University of Oregon

ABSTRACT

Research has shown that organization plays an important role in memory.
This study applies these findings to the design of a command language. The
concept of orthogonality was used to maximize the internal organization of a
text-editing command language. In Experiments 1 and 2, this orthogonal
language was compared to an organized, but nonorthogonal, and an
antiorganized language on measures of predictability, recall, and perfor-
mance. Subjects in the orthogonal language condition performed better than
subjects in the other conditions on all measures. In a third experiment, steps
were taken to eliminate possible confounding effects of mnemonics. The
orthogonal language was compared to the organized language on measures of
recall and performance. Even without the aid of mnemonics, subjects in the
orthogonal language condition performed better on the recall test than
subjects in the organized language condition. In addition, analysis of
keystroke data revealed that subjects using the orthogonal language required
less time to think of appropriate commands to accomplish their tasks. General
steps necessary to design an orthogonal language are discussed.

Authors are listed in alphabetical order.
Authors'present addresses: Edward M . Bowden, Department of Psychology, University

of Michigan-Flint, Flint, MI 48502; Sarah A. Douglas, Department of Computer and
Information Science, University of Oregon, Eugene, OR 97403; and Cathryn A.
Stanford, Hewlett Packard, 8600 Soper Hill Road, Everett, WA 98205.

Thursday, December 6, 12

180 . Paul Klmt

module Booleans
exports
sorts BOOL
lexical syntax
[\t \ n] + LAYOUT

context-free syntax
true - BOOL
false ~ BOOL
BOOL “W BOOL - BOOL {left}

equations
[Bl 1 true & true = true
[B2] true & false = false
[B3] false & true = false
[B4] false & true = false

module Naturals
imports Booleans
exports
sorts NAT
context-free syntax
“o ~ NAT
succ ‘((” NAT “)” - NAT
NAT “ < “ NAT + BOOL

variables
N - NAT
M ~ NAT

equations
[Nl] O <0 = false
[N2] SUCC (N) <0 = false
[N3] O < SUCC(N) = true
[N4] SUCC(N) < SUCC(M) = N < M

Fig. 1 An AbF + SDF specification of Booleans and Naturals

be parsed given the preceding syntax definition of the & operator. Since
arbitrary context-free grammars can be defined in this way, we cannot give a
fixed grammar for each module. Instead, all syntax rules defined in a module
(together with all syntax rules defined in imported modules) contribute to the
grammar of that particular module (see also Section 4).
Being interested in formal language definitions, we give an example of a

(trivial) type-checking problem. Consider the language L of programs of the
form

def {a lzst of zdent@rs} In {a lzst of identzfzers}

satisfying the constraint that each identifier appearing in the second list
appears in the first list as well. A definition of L is given in Figure 2 and
consists of three modules. Module Identifiers defines sorts ID (identifiers)
and ID-LIST (lists of identifiers) together with a membership function in. The
sort L-PROGRAM introduced in module L-syntax consists of all syntactically
correct L-programs. In module L-tc, we define the type-checking function tc[]
on L-programs that checks the constraint mentioned above.

ACM Transactions on Software Engmeermg and Methodology, Vol 2, No 2, Aprd 1993

• ASF+SDF

• “Just” two concepts

• Beautiful

• Orthogonal!

• Unusable

A bit of history...

Thursday, December 6, 12

Rascal

• Functional meta-programming language

• DSL implementation and program
understanding/renovation

• Source code in, source code out

• Source code in the broadest sense

http://www.rascal-mpl.org

Thursday, December 6, 12

http://www.rascal-mpl.org
http://www.rascal-mpl.org

Rascal’s Unique (?) features

• Integrated context-free grammars

• Very powerful pattern matching

• Transitive closure, solve statement

• Resources (Type providers reloaded)

• Source location data type

• Built-in (randomized) testing features

http://www.rascal-mpl.org

Thursday, December 6, 12

http://www.rascal-mpl.org
http://www.rascal-mpl.org



































Figure 1. Dimensions of requirements

and Datalog. Its transformation and manipulation features
are most directly inspired by term rewriting/functional lan-
guages such as ASF+SDF [18], Stratego [5], TOM [2], and
TXL [7]. Syntactically, RASCAL takes from ASF+SDF,
TXL and TOM, while semantics and implementation de-
tails are very much like ASF+SDF. The ATerm library [16],
inspired RASCAL’s immutable values. The ANTLR tool-
set [15], Eclipse IMP [6] and TOM [2] have been an inspi-
ration because they integrate well with a mainstream pro-
gramming environment. Their tractable and debuggable be-
haviour is very attractive. We also picked some cherries
from general purpose languages such as Haskell, Java, and
Ruby.

2.1 Requirements

RASCAL has been designed from a software engineering
perspective rather than from a formal, mathematical, per-
spective. We have profited from our experience in build-
ing source code analysis and transformation solutions using
ASF+SDF and RSCRIPT to formulate RASCAL’s require-
ments. We have focussed on three dimensions of require-
ments: expressiveness, safety and usability. Figure 1 shows
these dimensions together with some of the design deci-
sions that are motivated by them. Additionally, sufficient
performance for a wide range of SCAM applications is an-
other key requirement. Below we describe each dimension
in more detail.

Expressiveness Excellent means for expressing SCAM
solutions is our most important requirement. We can sub-
divide it along the analysis/transformation line. Analy-
sis requires suitable primitives for syntax analysis, pattern
matching and collection, aggregation, projection, compre-
hension and combination of (relational) analysis results.
Transformation requires powerful forms of pattern match-
ing and traversal for high-fidelity source-to-source transfor-

mations. The use of concrete syntax as opposed to abstract
syntax in the definition of transformation rules is essential.

Our goal is to cover the whole spectrum of SCAM. The
language should scale up sufficiently to tackle large, com-
plex problems like, for instance, legacy renovation or refac-
toring. It is preferable to solve these problems completely
in RASCAL without having to resort to ad hoc coding of
custom data-structures and/or algorithms in a general pur-
pose language. However, we also want it to scale down, so
that simple things remain simple. Computing the McCabe
complexity of all methods in a large Java project should be
close to a one-liner. Furthermore, problems usually solved
with simple tools like GREP or AWK, should be easily solv-
able in RASCAL too, and preferably have the same usability
characteristics.

Safety Source code analysis and transformation is a com-
plex domain where solutions are error-prone. Many appli-
cations are both deep (conceptually hard) and wide (many
details to consider). A modular language that facilitates en-
capsulation and reuse helps to deal with such complexity.

A static type system that offers safety features such as
immutability and well-formedness will also help manag-
ing this complexity. We require that this type system in-
tegrates both the analysis and the transformation domain.
This means that analysis results can be easily (re)used dur-
ing transformation and that conversion, encoding and serial-
ization of data between analysis and transformation phases
is avoided. This also implies that syntax trees are fully
typed; an essential prerequisite to ensure syntax safety for
high-fidelity source-to-source transformations.

Usability Usability includes learnability, readability, de-
buggability, traceability, deployability and extensibility. We
like the principle of least surprise and take stock in the
fact that source code analysis and transformation is a form
of programming. Staying close to ordinary, main stream
programming languages will lower the barrier to entry for
RASCAL. We also favour the what you see is what you
get paradigm: most forms of implicitness or heuristics will
eventually present usability problems.

No matter how good our domain analysis is, we can-
not anticipate everything. Advanced users of RASCAL
should therefore be able to extend the language with ad-
ditional primitive functions in order to cater for new inter-
facing needs, faster implementation, or dedicated domain
specific functionality. We advocate an open design that en-
ables easy interoperability and integration with third-party
components such as databases, parsers, SAT solvers, model
checkers, visualization tool kits, and IDEs. Finally, we re-
quire RASCAL to have good encapsulation mechanisms that
enable users to build reuseable components. Libraries of

2

Thursday, December 6, 12

Language design

• Design = hypothesis

• Observe use in practice

• Revise design if needed

• Learn by doing!

• Today: questions more than answers

Thursday, December 6, 12

A taste of Rascal

Thursday, December 6, 12

Relational calculus
r = {
 <"active","waitingForDrawer">,
 <"idle","active">,
 <"unlockedPanel","idle">,
 <"waitingForLight","unlockedPanel">,
 <"active","waitingForLight">,
 <"waitingForDrawer","unlockedPanel">
 };

 r<0>;

 r<1,0>;

 r["active"];

 r+;

 r*;

 r o r

Thursday, December 6, 12

Relational calculus
r = {
 <"active","waitingForDrawer">,
 <"idle","active">,
 <"unlockedPanel","idle">,
 <"waitingForLight","unlockedPanel">,
 <"active","waitingForLight">,
 <"waitingForDrawer","unlockedPanel">
 };

 r<0>;

 r<1,0>;

 r["active"];

 r+;

 r*;

 r o r

set of tuples

Thursday, December 6, 12

Relational calculus
r = {
 <"active","waitingForDrawer">,
 <"idle","active">,
 <"unlockedPanel","idle">,
 <"waitingForLight","unlockedPanel">,
 <"active","waitingForLight">,
 <"waitingForDrawer","unlockedPanel">
 };

 r<0>;

 r<1,0>;

 r["active"];

 r+;

 r*;

 r o r

projection

set of tuples

Thursday, December 6, 12

Relational calculus
r = {
 <"active","waitingForDrawer">,
 <"idle","active">,
 <"unlockedPanel","idle">,
 <"waitingForLight","unlockedPanel">,
 <"active","waitingForLight">,
 <"waitingForDrawer","unlockedPanel">
 };

 r<0>;

 r<1,0>;

 r["active"];

 r+;

 r*;

 r o r

projection

invert

set of tuples

Thursday, December 6, 12

Relational calculus
r = {
 <"active","waitingForDrawer">,
 <"idle","active">,
 <"unlockedPanel","idle">,
 <"waitingForLight","unlockedPanel">,
 <"active","waitingForLight">,
 <"waitingForDrawer","unlockedPanel">
 };

 r<0>;

 r<1,0>;

 r["active"];

 r+;

 r*;

 r o r

projection

invert right
image

set of tuples

Thursday, December 6, 12

Relational calculus
r = {
 <"active","waitingForDrawer">,
 <"idle","active">,
 <"unlockedPanel","idle">,
 <"waitingForLight","unlockedPanel">,
 <"active","waitingForLight">,
 <"waitingForDrawer","unlockedPanel">
 };

 r<0>;

 r<1,0>;

 r["active"];

 r+;

 r*;

 r o r

projection

invert right
image

transitive closure

set of tuples

Thursday, December 6, 12

Relational calculus
r = {
 <"active","waitingForDrawer">,
 <"idle","active">,
 <"unlockedPanel","idle">,
 <"waitingForLight","unlockedPanel">,
 <"active","waitingForLight">,
 <"waitingForDrawer","unlockedPanel">
 };

 r<0>;

 r<1,0>;

 r["active"];

 r+;

 r*;

 r o r

projection

invert right
image

transitive closure

transitive
reflexive closure

set of tuples

Thursday, December 6, 12

Relational calculus
r = {
 <"active","waitingForDrawer">,
 <"idle","active">,
 <"unlockedPanel","idle">,
 <"waitingForLight","unlockedPanel">,
 <"active","waitingForLight">,
 <"waitingForDrawer","unlockedPanel">
 };

 r<0>;

 r<1,0>;

 r["active"];

 r+;

 r*;

 r o r

projection

invert right
image

transitive closure

transitive
reflexive closure

relation
composition

set of tuples

Thursday, December 6, 12

Container Equivalent type Operations

set[tuple[...]] rel _o_, _+, _*, _[_]

list[tuple[...]] orel same?

bag[tuple[...]] mrel same?

map map same?

Relations...

Thursday, December 6, 12

Matching

 int x := 3;

 event(x, y) := event("a", "b");

 event("c", "d") !:= event("a", "b");

 [*x, 1, *y] := [5, 6, 1, 1, 1, 3, 4];

 {1, *x} := {4, 5, 6, 1, 2, 3};

 /transition(e, "idle") := ast;
 /state(x, _, /transition(_, x)) := ast;

 3 <- {1,2,3}
 int x <- {1,2,3}

Thursday, December 6, 12

Matching

 int x := 3;

 event(x, y) := event("a", "b");

 event("c", "d") !:= event("a", "b");

 [*x, 1, *y] := [5, 6, 1, 1, 1, 3, 4];

 {1, *x} := {4, 5, 6, 1, 2, 3};

 /transition(e, "idle") := ast;
 /state(x, _, /transition(_, x)) := ast;

 3 <- {1,2,3}
 int x <- {1,2,3}

type-based matching

Thursday, December 6, 12

Matching

 int x := 3;

 event(x, y) := event("a", "b");

 event("c", "d") !:= event("a", "b");

 [*x, 1, *y] := [5, 6, 1, 1, 1, 3, 4];

 {1, *x} := {4, 5, 6, 1, 2, 3};

 /transition(e, "idle") := ast;
 /state(x, _, /transition(_, x)) := ast;

 3 <- {1,2,3}
 int x <- {1,2,3}

type-based matching

structural matching

Thursday, December 6, 12

Matching

 int x := 3;

 event(x, y) := event("a", "b");

 event("c", "d") !:= event("a", "b");

 [*x, 1, *y] := [5, 6, 1, 1, 1, 3, 4];

 {1, *x} := {4, 5, 6, 1, 2, 3};

 /transition(e, "idle") := ast;
 /state(x, _, /transition(_, x)) := ast;

 3 <- {1,2,3}
 int x <- {1,2,3}

type-based matching

structural matching

anti-matching

Thursday, December 6, 12

Matching

 int x := 3;

 event(x, y) := event("a", "b");

 event("c", "d") !:= event("a", "b");

 [*x, 1, *y] := [5, 6, 1, 1, 1, 3, 4];

 {1, *x} := {4, 5, 6, 1, 2, 3};

 /transition(e, "idle") := ast;
 /state(x, _, /transition(_, x)) := ast;

 3 <- {1,2,3}
 int x <- {1,2,3}

type-based matching

structural matching

anti-matching

list matching

Thursday, December 6, 12

Matching

 int x := 3;

 event(x, y) := event("a", "b");

 event("c", "d") !:= event("a", "b");

 [*x, 1, *y] := [5, 6, 1, 1, 1, 3, 4];

 {1, *x} := {4, 5, 6, 1, 2, 3};

 /transition(e, "idle") := ast;
 /state(x, _, /transition(_, x)) := ast;

 3 <- {1,2,3}
 int x <- {1,2,3}

type-based matching

structural matching

anti-matching

list matching

set matching

Thursday, December 6, 12

Matching

 int x := 3;

 event(x, y) := event("a", "b");

 event("c", "d") !:= event("a", "b");

 [*x, 1, *y] := [5, 6, 1, 1, 1, 3, 4];

 {1, *x} := {4, 5, 6, 1, 2, 3};

 /transition(e, "idle") := ast;
 /state(x, _, /transition(_, x)) := ast;

 3 <- {1,2,3}
 int x <- {1,2,3}

type-based matching

structural matching

anti-matching

list matching

set matching

deep matching

Thursday, December 6, 12

Matching

 int x := 3;

 event(x, y) := event("a", "b");

 event("c", "d") !:= event("a", "b");

 [*x, 1, *y] := [5, 6, 1, 1, 1, 3, 4];

 {1, *x} := {4, 5, 6, 1, 2, 3};

 /transition(e, "idle") := ast;
 /state(x, _, /transition(_, x)) := ast;

 3 <- {1,2,3}
 int x <- {1,2,3}

type-based matching

structural matching

anti-matching

list matching

set matching

deep matching

element matching

Thursday, December 6, 12

list-matching
rascal>for ([*x, *y] := [1,1,1,1,1,1]) println("<x> <y>");
[] [1,1,1,1,1,1]
[1] [1,1,1,1,1]
[1,1] [1,1,1,1]
[1,1,1] [1,1,1]
[1,1,1,1] [1,1]
[1,1,1,1,1] [1]
[1,1,1,1,1,1] []

Thursday, December 6, 12

list-matching
rascal>for ([*x, *y] := [1,1,1,1,1,1]) println("<x> <y>");
[] [1,1,1,1,1,1]
[1] [1,1,1,1,1]
[1,1] [1,1,1,1]
[1,1,1] [1,1,1]
[1,1,1,1] [1,1]
[1,1,1,1,1] [1]
[1,1,1,1,1,1] []

rascal>for ([*x, *y] := [1,1,1,1,1,1], x == y) println("<x> <y>");
[1,1,1] [1,1,1]

Thursday, December 6, 12

set-matching
rascal>for ({*x, *y} := {1,2,3,4}) println("<x> <y>");
{4,3,2,1} {}
{4,3,2} {1}
{4,3,1} {2}
{4,3} {2,1}
{4,2,1} {3}
{4,2} {3,1}
{4,1} {3,2}
{4} {3,2,1}
{3,2,1} {4}
{3,2} {4,1}
{3,1} {4,2}
{3} {4,2,1}
{2,1} {4,3}
{2} {4,3,1}
{1} {4,3,2}
{} {4,3,2,1}

Thursday, December 6, 12

Collection types

Collection Matching

Lists Associative

Bags Associative, commutative

Sets
Associative, commutative,

idempotent

Thursday, December 6, 12

Language extensibility:
LDTA’11 ToolChallenge

L1: control-flow

L2: FOR and CASE

L3:Procedures

L4:Arrays and Records

Thursday, December 6, 12

A simple interpreter

data Exp
 = add(Exp lhs, Exp rhs)
 | lit(int n)
 ;

public int eval0(Exp e) {
 switch (e) {
 case add(l, r): return eval(l) + eval(r);
 case lit(n): return n;
 }
}

Thursday, December 6, 12

Extension
module Neg

extend Add;

data Exp = neg(Exp arg);

Thursday, December 6, 12

Extension
module Neg

extend Add;

data Exp = neg(Exp arg);

public int eval0(Exp e) {
 switch (e) {
 case add(l, r): return eval(l) + eval(r);
 case lit(n): return n;
 }
}

How to extend
the interpreter?

Thursday, December 6, 12

Pattern-based dispatch

• Open up “switch”

• Allow arbitrary patterns in function
signatures

• Liberalize overloading of functions...

Thursday, December 6, 12

Open interpreter
module Add

data Exp = add(Exp lhs, Exp rhs) | lit(int n);

public int eval1(add(l, r)) = eval1(l) + eval1(r);
public int eval1(lit(n)) = n;

Thursday, December 6, 12

Open interpreter
module Add

data Exp = add(Exp lhs, Exp rhs) | lit(int n);

public int eval1(add(l, r)) = eval1(l) + eval1(r);
public int eval1(lit(n)) = n;

module Neg
extend Add;

data Exp = neg(Exp arg);

public int eval1(neg(a)) = - eval1(a);

Thursday, December 6, 12

Traversal using visit

public Exp propagate0(Exp e) {
 return innermost visit (e) {
 case add(lit(a), lit(b)) => lit(a + b)
 }
}

Thursday, December 6, 12

Traversal using visit

public Exp propagate0(Exp e) {
 return innermost visit (e) {
 case add(lit(a), lit(b)) => lit(a + b)
 }
}

traversal
strategy

Thursday, December 6, 12

Traversal using visit

public Exp propagate0(Exp e) {
 return innermost visit (e) {
 case add(lit(a), lit(b)) => lit(a + b)
 }
}

structure shy

traversal
strategy

Thursday, December 6, 12

Traversal using visit

public Exp propagate0(Exp e) {
 return innermost visit (e) {
 case add(lit(a), lit(b)) => lit(a + b)
 }
}

structure shy type preserving

traversal
strategy

Thursday, December 6, 12

Feature “Open”

switch pattern-based
dispatch

visit ?

Thursday, December 6, 12

Visit using functions
module Add
public Exp propStep(add(lit(a), lit(b))) = lit(a + b);

public Exp propagate1(Exp e) = innermost visit (e, propStep);

!!!

Thursday, December 6, 12

Visit using functions

module Neg
extend Add;

public Exp propStep(neg(lit(n))) = lit(-n);

module Add
public Exp propStep(add(lit(a), lit(b))) = lit(a + b);

public Exp propagate1(Exp e) = innermost visit (e, propStep);

!!!

Thursday, December 6, 12

Comprehensions

[i | i <- [1..100], i % 2 == 0];

(i: i*i | i <- [1..10]);

{ <i, i*i> | i <- [1..10] };

Thursday, December 6, 12

Comprehensions

[i | i <- [1..100], i % 2 == 0];

(i: i*i | i <- [1..10]);

{ <i, i*i> | i <- [1..10] };

list

Thursday, December 6, 12

Comprehensions

[i | i <- [1..100], i % 2 == 0];

(i: i*i | i <- [1..10]);

{ <i, i*i> | i <- [1..10] };

list

map

Thursday, December 6, 12

Comprehensions

[i | i <- [1..100], i % 2 == 0];

(i: i*i | i <- [1..10]);

{ <i, i*i> | i <- [1..10] };

list

map

set &
relation

Thursday, December 6, 12

Higher-order reduce
public &T reduce(list[&T] l, &T init, &T(&T, &T) op) {
 &T n = init;
 for (e <- l)
 n = op(e, n);
 return n;
}

public int sum1(list[int] l) =
 reduce(l, 0, int(int e,int a) { return e + a; });

Clunky, needs if ’s
for conditions

Put in a library

Ugly because of
types and curly

syntax

Thursday, December 6, 12

Reducers
public int sum(list[int] l) =
 (0 | it + x | x <- l);

accumulator

public int sumEven(list[int] l) =
 (0 | it + x | x <- l, x % 2 == 0);

like comprehensions

Thursday, December 6, 12

Folds...

Type... Collection Tree

Preserving comprehension visit

Transforming comprehension ?

Unifying reducer ?

Thursday, December 6, 12

Summarizing

• Set of tuple is a rel: why not mrel and orel?

• Sets and list: why not bags?

• Open switch: why not open visit?

• Folds over collections: why not over trees?

Thursday, December 6, 12

Non-OrthogonalOrthogonal

pure ad hoc
hard to implement

terse
minimalism

baroque

modernism
one-way-to-do-it

keyworditis

dead corners
compositional non-compositional

post-modernism

many-ways-to-do-it

general domain-specific

eclectic

Domain-specific:
Most things discussed in
context of Rascal are
general purpose stuff.

complex
clean dirty

direct

to the point
?

Thursday, December 6, 12

Scylla & Charybdis

Algol 68,
Smalltalk,
Haskell

ABAP, Cobol.
4GL etc.

Thursday, December 6, 12

• Orthogonality = design constraint

• Minimize concepts, maximize combinatorics

• More concepts => orthogonality is harder

• Trade-offs: slippery slope, turing tarpit,
simplicity lost

Thursday, December 6, 12

Orthogonality by Stefano Bertolo CC BY-NC-SA 2.0

http://www.rascal-mpl.org

Thursday, December 6, 12

http://www.rascal-mpl.org
http://www.rascal-mpl.org

