G 0
 1
 H O

- Rascal, a heartbreaking work of staggering genius ;-)
- Some mistakes we have made...
- or we are about to make...
- or not...
- have to do with orthogonality...

STICHTING MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49 AMSTERDAM

REKENAFDELING

MR 76

Orthogonal design and description of a formal language
by
A. van Wijngaarden

As to the design of a language I should like to see the definition of a language as a Cartesion product of its concepts.

Algol 68

- procedures as params
- values as params
- values can be assigned
- so procedures can be assigned.

Cartesian product

	assign	pass
expr	yes	yes
proc	$?$	yes

STANFORD ART IFIC IAL INTELLIGENCE LABORATORY MEMO AIM-224

STAN-CS-73-403

HINTS ON PROGRAMMING LANGUAGE DESIGN

BY

C. A. R. HOARE

Another replacement of simplicity as an objective has been orthogonality of design. An example of orthogonality is the provision of complex integers, on the argument that we need reals and integers and complex reals, so why not complex integers? In the early days of hardware design, some very ingenious but arbitrary features turned up in order codes as a result of orthogonal combinations of the function bits of an instruction, on the grounds that some clever programmer would find a use for them, -- and some clever programmer always did. Hardware designers have now learned more sense; but language designers are clever programmers and have not.

ON THE DESIGN OF PROGRAMMING LANGUAGES*
 N. WIRTH

*Reprinted from Proc. IFIP Congress 74, 386-393, North-
Holland, Amsterdam, North-Holland Publishing Company.
The author is with the Institut fur Informatik, Eidg. Technische Hochschule, Zurich, Switzeriand.

The new trend was to discover the fundamental concepts of algorithms, to extract them from their various incarnations in different language features, and to present them in a pure, distilled form, free from arbitrary and restrictive rules of applicability.

Backfiring orthogonality

```
( real x,y;
    read((x,y));
    if x < y then a else b
    fi
    ) :=
    b +
        if a:= a+1; a > b
        then
        c:=c+1; +b
        else
        c:=c-1; a
    fi
    Declare two local variables.
    Read two values in them from input.
    Choose one of them as the
left hand side of the assignment.
The right hand side consists of b and
a conditionally selected second
operand. If a > b, increment a,
and the second operand is
+b, increment c in the meanwhile
If a is not > b, then the second
operand is a, decrement c.
End of selection of the second operand }
```

Algol 68

Testing the Principle of Orthogonality in Language Design

Edward M. Bowden, Sarah A. Douglas, and Cathryn A. Stanford

University of Oregon
sorts BOOL
lexical syntax

context-free syntax true
false
BOOL "\&" BOOL
equations
[B1] true \& true
[B2] true \& false
[B3] false \& true
[B4] false \& true
module Naturals
imports Booleans
exports
sorts NAT
context-free syntax "0"
succ " (" NAT " $)$ "
NAT " ", NAT NAT" < "NAT
variables

$$
N \rightarrow N A T
$$

equations

$[\mathrm{N} 1]$	$0<0$	$=$ false
[N2] $\operatorname{succ}(N)<0$	$=$ false	
[N3] $0<\operatorname{succ}(N)$	$=$ true	
$[\mathrm{N} 4]$	$\operatorname{succ}(\mathrm{N})<\operatorname{succ}(\mathrm{M})$	$=\mathrm{N}<\mathrm{M}$

\rightarrow BOOL
$\rightarrow \mathrm{BOOL}$
\rightarrow BOOL \{left\}
$=$ true
= false
= false
$=$ false
\rightarrow NAT
\rightarrow NAT
$\rightarrow \mathrm{BOOL}$

$$
\mathrm{M} \rightarrow \text { NAT }
$$

A bit of history...

- ASF+SDF
- "Just" two concepts
- Beautiful
- Orthogonal!
- Unusable

Rascal

- Functional meta-programming language
- DSL implementation and program understanding/renovation
- Source code in, source code out
- Source code in the broadest sense

Rascal's Unique (?) features

- Integrated context-free grammars
- Very powerful pattern matching
- Transitive closure, solve statement

- Resources (Type providers reloaded)
- Source location data type
- Built-in (randomized) testing features

Language design

- Design = hypothesis
- Observe use in practice
- Revise design if needed
- Learn by doing!
- Today: questions more than answers

A taste of Rascal

Relational calculus

```
r={
    <"active","waitingForDrawer">,
    <"idle","active">,
    <"unlockedPanel","idle">,
    <"waitingForLight","unlockedPanel">,
    <"active","waitingForLight">,
    <"waitingForDrawer","unlockedPanel">
    };
r<0>;
r<1,0>;
r["active"];
r+;
r*;
ror
```


Relational calculus

set of tuples

$r=\{$
<"active","waitingForDrawer">, <"idle", "active">,
<"unlockedPanel", "idle">,
<"waitingForLight", "unlockedPanel">, <"active", "waitingForLight">, <"waitingForDrawer", "unlockedPanel"> \};

$$
\begin{aligned}
& \mathrm{r}<0> \\
& \mathrm{r}<1,0> \\
& \mathrm{r}[\text { "activ } \\
& \mathrm{r}+ \\
& \mathrm{r}^{*} \\
& \text { r o r }
\end{aligned}
$$

r["active"];

Relational calculus

set of tuples

$r=\{$
<"active","waitingForDrawer">, <"idle", "active">,
<"unlockedPanel", "idle">,
<"waitingForLight", "unlockedPanel">, <"active", "waitingForLight">, <"waitingForDrawer", "unlockedPanel"> \};
projection
$r<0>$;
$r<1,0>$;
r["active"];
r+;
r^{*};
$r o r$

Relational calculus

Relations...

Container	Equivalent type	Operations
set[tuple[...]]	rel	_0_, + ${ }_{\text {, }}$ *, _ []
list[tuple[...]]	orel $\stackrel{\square}{x}$	same?
bag[tuple[. $\sqrt[4]{\sqrt[x]{x}}$	mrel	same?
map	map	same?

Matching

$$
\begin{aligned}
& \text { int } x:=3 ; \\
& \text { event(x, y) := event("a", "b"); } \\
& \text { event("c", "d") !:= event("a", "b"); } \\
& {[* x, 1, * y]:=[5,6,1,1,1,3,4] ;} \\
& \{1, * x\}:=\{4,5,6,1,2,3\} ; \\
& \text { /transition(e, "idle") := ast; } \\
& \text { /state(x, -, /transition(_, x)) := ast; } \\
& 3<-\{1,2,3\} \\
& \text { int } x<-\{1,2,3\}
\end{aligned}
$$

Matching

type-based matching

$$
\begin{aligned}
& \text { int } x:=3 ; \\
& \text { event(x, y) }:=\text { event("a", "b"); } \\
& \text { event("c", "d") !:= event("a", "b"); } \\
& {[* x, 1, * y]:=[5,6,1,1,1,3,4] ;} \\
& \{1, * x\}:=\{4,5,6,1,2,3\} ; \\
& \text { /transition(e, "idle") := ast; } \\
& \text { /state(x, , /transition(_, x)) := ast; } \\
& 3<-\{1,2,3\} \\
& \text { int } x<-\{1,2,3\}
\end{aligned}
$$

Matching

type-based matching

```
int \(x\) := 3;
```

structural matching

```
event(x, y) := event("a", "b");
```

event("c", "d") !:= event("a", "b");

$$
[* x, 1, * y]:=[5,6,1,1,1,3,4]
$$

$$
\{1, * x\}:=\{4,5,6,1,2,3\}
$$

/transition(e, "idle") := ast;

$$
/ \operatorname{state}(x, \quad,, / t r a n s i t i o n(-, x)):=\text { ast }
$$

$$
3<-\{1,2,3\}
$$

$$
\text { int } x<-\{1,2,3\}
$$

Matching

type-based matching

```
int \(x\) := 3;
```

structural matching
event(x, y) := event("a", "b");
anti-matching
event("c", "d") !:= event("a", "b");

$$
\begin{aligned}
& {[* x, 1, * y]:=[5,6,1,1,1,3,4] ;} \\
& \left\{1, *_{x}\right\}:=\{4,5,6,1,2,3\} ; \\
& \text { /transition(e, "idle") := ast; } \\
& \text { /state(x, -, /transition(_, x)) := ast; } \\
& 3<-\{1,2,3\} \\
& \text { int } x<-\{1,2,3\}
\end{aligned}
$$

Matching

type-based matching

```
int \(x:=3 ;\)
```

structural matching
event(x, y) := event("a", "b");
anti-matching
event("c", "d") !:= event("a", "b");
list matching $>\left[{ }^{*} x, 1,{ }^{*} y\right]:=[5,6,1,1,1,3,4]$;

$$
\begin{aligned}
& \{1, * x\}:=\{4,5,6,1,2,3\} ; \\
& \text { /transition(e, "idle") }:=\text { ast; } \\
& \text { /state(x, }, / \text { transition(_, x)) }:=\text { ast; } \\
& 3<-\{1,2,3\} \\
& \text { int } x<-\{1,2,3\}
\end{aligned}
$$

Matching

type-based matching

```
int \(x:=3 ;\)
```

structural matching
$\operatorname{event}(x, y):=\operatorname{event}(" a ", \quad " b ") ;$

anti-matching

event("c", "d") !:= event("a", "b");
list matching $\left[{ }^{*} x, 1,{ }^{*} y\right]:=[5,6,1,1,1,3,4]$;
set matching $\left\{1,{ }^{*} x\right\}:=\{4,5,6,1,2,3\}$;

$$
\begin{aligned}
& \text { /transition(e, "idle") := ast; } \\
& \text { /state(x, _, /transition(_, x)) := ast; }
\end{aligned}
$$

$$
3<-\{1,2,3\}
$$

$$
\text { int } x<-\{1,2,3\}
$$

Matching

type-based matching

```
int \(x\) := 3;
```

structural matching
event(x, y) := event("a", "b");
anti-matching
event("c", "d") !:= event("a", "b");
list matching $\left[{ }^{*} \mathrm{x}, 1,{ }^{*} \mathrm{y}\right]:=[5,6,1,1,1,3,4]$;
set matching $\left\{1,{ }^{*} \times\right\}:=\{4,5,6,1,2,3\}$;
deep matching $\int / \operatorname{state}(x$, , $/$ transition $(, x)):=$ ast;

$$
\begin{aligned}
& 3<-\{1,2,3\} \\
& \text { int } x<-\{1,2,3\}
\end{aligned}
$$

Matching

type-based matching

```
int \(x\) := 3;
```

structural matching
event(x, y) := event("a", "b");
anti-matching
event("c", "d") !:= event("a", "b");
list matching $>\left[* x, 1,{ }^{*} y\right]:=[5,6,1,1,1,3,4]$;
set matching $\longrightarrow\{1, * x\}:=\{4,5,6,1,2,3\}$;
deep matching $\longrightarrow / \operatorname{state}(x$, , $/ / \operatorname{transition(}, x)):=$ ast;
element matching $3<-\{1,2,3\}$
int $x<-\{1,2,3\}$

list-matching

```
rascal>for ([*x, *y] := [1,1,1,1,1,1]) println("<x> <y>");
[] [1,1,1,1,1,1]
[1] [1,1,1,1,1]
[1,1] [1,1,1,1]
[1,1,1] [1,1,1]
[1,1,1,1] [1,1]
[1,1,1,1,1] [1]
[1,1,1,1,1,1] []
```


list-matching

```
rascal>for ([*x, *y] := [1,1,1,1,1,1]) println("<x> <y>");
[] [1,1,1,1,1,1]
[1] [1,1,1,1,1]
[1,1] [1,1,1,1]
[1,1,1] [1,1,1]
[1,1,1,1] [1,1]
[1,1,1,1,1] [1]
[1,1,1,1,1,1] []
```

rascal>for ([*x, *y] := [1,1,1,1,1,1], x == y) println("<x> <y>"); [1,1,1] [1,1,1]

set-matching

rascal>for (\{*x, *y\} := \{1,2,3,4\}) println("<x> <y>");
$\{4,3,2,1\}\}$
$\{4,3,2\}\{1\}$
$\{4,3,1\}\{2\}$
$\{4,3\}\{2,1\}$
$\{4,2,1\}\{3\}$
$\{4,2\}\{3,1\}$
$\{4,1\}\{3,2\}$
$\{4\}\{3,2,1\}$
$\{3,2,1\}\{4\}$
$\{3,2\}\{4,1\}$
$\{3,1\}\{4,2\}$
$\{3\}\{4,2,1\}$
$\{2,1\}\{4,3\}$
$\{2\}\{4,3,1\}$
$\{1\}\{4,3,2\}$
\{\} $\{4,3,2,1\}$

Collection types

Collection	Matching
Lists	Associative
Bags	Associative, commutative $\stackrel{\text { Ansen }}{\otimes / 2}$
Sets	Associative, commutative, idempotent

Language extensibility: LDTA'I I ToolChallenge

LI: control-flow

L2: FOR and CASE

L3:Procedures

L4:Arrays and Records

A simple interpreter

```
data Exp
    = add(Exp lhs, Exp rhs)
    | lit(int n)
public int eval0(Exp e) {
    switch (e) {
        case add(l, r): return eval(l) + eval(r);
        case lit(n): return n;
    }
}
```


Extension

```
module Neg
extend Add;
data Exp = neg(Exp arg);
```


Extension

module Neg
extend Add;
data $\operatorname{Exp}=$ neg(Exp arg);

How to extend the interpreter?
public int eval0(Exp e) \{
switch (e) \{
case add(l, r): return eval(l) + eval(r); case lit(n): return n;
\}
\}

Pattern-based dispatch

- Open up "switch"
- Allow arbitrary patterns in function signatures
- Liberalize overloading of functions...

Open interpreter

module Add
data $\operatorname{Exp}=\operatorname{add}(\operatorname{Exp}$ lhs, $\operatorname{Exp} r$ rs) $\mid \operatorname{lit}(i n t n)$;
public int eval1(add(l, r)) = eval1 (l) + eval1 (r); public int eval1(lit(n)) $=n$;

Open interpreter

module Add
data $\operatorname{Exp}=\operatorname{add}(\operatorname{Exp}$ lhs, Exp rhs) $\mathrm{I} \operatorname{lit}(i n t \mathrm{n})$;
public int eval1(add(l, r)) = eval1 (l) + eval1 (r); public int eval1(lit(n)) $=n$;

module Neg
extend Add;
data $\operatorname{Exp}=$ neg(Exp arg);
public int eval1 (neg(a)) = - eval1(a);

Traversal using visit

public Exp propagate0(Exp e) \{ return innermost visit (e) \{ case $\operatorname{add}(l i t(a), \operatorname{lit}(b))=>\operatorname{lit}(a+b)$ \}
\}

Traversal using visit

Traversal using visit

Traversal using visit

Feature	"Open"
switch	pattern-based dispatch
visit	$?, \frac{\text { vonem }}{*}$

Visit using functions

```
module Add public Exp propStep(add(lit(a), lit(b))) = lit(a + b);
```

public Exp propagate1(Exp e) = innermost visit (e, propStep);

Visit using functions

```
module Add
public Exp propStep(add(lit(a), lit(b))) = lit(a + b);
```

public Exp propagate1(Exp e) = innermost visit (e, propStep);

module Neg
extend Add;
public Exp propStep(neg(lit(n))) = lit(-n);

Comprehensions

[i | i <- [1..100], i \% 2 == 0];
(i: i*i l i <- [1..10]);
$\{<i, i * i>\mid i<-[1 . .10]\} ;$

Comprehensions

list
[i li <- [1..100], i \% $2=0$];
(i: i*i | i <- [1..10]);
\{ <i, i*i> | i <- [1..10] \};

Comprehensions

$$
\begin{aligned}
& \text { list }[\mathrm{i} \mid \mathrm{i}<-[1 . .100], \text { i } \% 2=0] \text {; } \\
& \text { map } \\
& \text { (i: i*i l i <- [1..10]); } \\
& \text { \{ <i, i*i> | i <- [1..10] \}; }
\end{aligned}
$$

Comprehensions

list \square i \mid i <- [1..100], i $\% 2=0]$;
$\operatorname{map} \longrightarrow(i: i * i \quad i<-[1 . .10])$;
$\operatorname{set} \& \quad\left\{<i, i^{*} i>\mid i<-[1 . .10]\right\} ;$ relation

Higher-order reduce

public \&T reduce(list[\&T] l, \&T init, \&T(\&T, \&T) op) \{
\&T n = init;
for (e <- l)
$\mathrm{n}=\mathrm{op}(\mathrm{e}, \mathrm{n})$;
return n ;
\}

Put in a library

public int sum1(list[int] l) = reduce (l, 0, int(int e,int a) \{ return e + a; \});
Clunky, needs if's for conditions

Ugly because of types and curly syntax

Reducers

public int sum(list[int] l) = (0 | it $+x \mid x<-l$);

public int sumEven(list[int] l) =
($0 \mid$ it $+\mathrm{x} \mid \mathrm{x}<-\mathrm{l}, \mathrm{x} \% 2=0$);
like comprehensions

Folds...

Type...	Collection	Tree
Preserving	comprehension	visit
Transforming	comprehension	$?, ~ \sqrt[~ v i n g ~]{x}$
Unifying	reducer	$?$

Summarizing

SLOPE

- Set of tuple is a rel: why not mrel and orel?
- Sets and list: why not bags?
- Open switch: why not open visit?
- Folds over collections: why not over trees?

Orthogonal
pure
hard to implement terse minimalism modernism
one-way-to-do-it dead corners
compositional general
complex clean

Scylla \& Charybdis

Algol 68, Smalltalk, Haskell

ABAP, Cobol 4GL etc.

- Orthogonality $=$ design constraint
- Minimize concepts, maximize combinatorics
- More concepts => orthogonality is harder
- Trade-offs: slippery slope, turing tarpit, simplicity lost

Orthogonality by Stefano Bertolo CC BY-NC-SA 2.0
http://www.rascal-mpl.org

