
Traits as Objects in Grace

Andrew P. Black
Portland State University

minigrace

2

http://homepages.ecs.vuw.ac.nz/~mwh/minigrace/js/
http://homepages.ecs.vuw.ac.nz/~mwh/minigrace/js/

Disclaimer

The views expressed here are my own,
and may not be representative of those of

the Grace design team

Disagreement has had a powerful beneficial
effect on the design of Grace

3

Background on Traits
• “Traits” = Smalltalk traits as described by

Schärli et al. [ECOOP 2004, TOPLAS 2006]:
- algebra of method combination
- a trait is a set of named methods with operations

+, -, @ and uses
- traits have no state; just pure methods and

bindings to self

• There are other definitions of trait, e.g.,
- Curry et al. [SIGOA 1982]
- Reppy & Turon [ECOOP 2007]

4

5

6

What’s Good about Traits
• “Despite their relative simplicity, traits offer a

surprisingly rich calculus.” [Reppy & Turon 2007]

• “more nimble and lighter-weight than either
multiple inheritance or mixins” [ibid.]

- but you can do MI and mixin-like stuff with traits

• Separates the unit of reuse (the trait) from the
generator of objects (the class)
- Classes struggle to fill both roles:

Complete,
monolithic

Fine-grained,
often incomplete

Grace doesn’t have Traits
and I agreed to this!

• Why?
- Designed for teaching, not large-scale software

engineering
‣ So code reuse is not so important (?)

- Traits are not “mainstream”
‣ We need to teach what is in common use

- Inheritance is “mainstream” object-orientation
‣ So Grace must contain inheritance

- Grace is small and simple
‣ So it should not have two reuse mechanisms

7

Andrew’s working hypothesis
• It's possible, in Grace to:
- provide something very like traits using objects

- build something very like inheritance out of traits

- build more than one variety of inheritance

• This is a Good Idea because:

- Core Grace would have one reuse mechanism, but

- Grace could be used to teach a variety of reuse
mechanisms

8

• Everything is an Object
- but every object is not an instance of a class

• Instead: objects are self-contained

• Objects are created by executing an object constructor

9

object {
 def x:Number is public, readable = 2
 def y:Number is public, readable = 3
 method distanceTo (other:Point) → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

Objects in Grace

10

object {
 def x:Number is public, readable = 2
 def y:Number is public, readable = 3
 method distanceTo (other:Point) → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

10

object {
 def x:Number is public, readable = 2
 def y:Number is public, readable = 3
 method distanceTo (other:Point) → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

10

x

object {
 def x:Number is public, readable = 2
 def y:Number is public, readable = 3
 method distanceTo (other:Point) → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

10

x

y

object {
 def x:Number is public, readable = 2
 def y:Number is public, readable = 3
 method distanceTo (other:Point) → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

10

x

y
distance

To

object {
 def x:Number is public, readable = 2
 def y:Number is public, readable = 3
 method distanceTo (other:Point) → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

10

x

y
distance

To

object {
 def x:Number is public, readable = 2
 def y:Number is public, readable = 3
 method distanceTo (other:Point) → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

methods

10

x

y
distance

To 2 3

object {
 def x:Number is public, readable = 2
 def y:Number is public, readable = 3
 method distanceTo (other:Point) → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

methods
captured

state

10

x

y
distance

To 2 3

object {
 def x:Number is public, readable = 2
 def y:Number is public, readable = 3
 method distanceTo (other:Point) → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

methods
captured

state

10

x

y
distance

To 2 3

object {
 def x:Number is public, readable = 2
 def y:Number is public, readable = 3
 method distanceTo (other:Point) → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

methods
captured

state

self.x

Notice:

• Nothing in an object but methods

• No “instance variables” per se
- methods can capture any def or var in scope

• Objects can be created with interesting fields
- makes it simple to define simple objects

- the only way to create objects with def fields

11

An aside on self

• In the previous figure, self is treated just like
any other bound variable

• Alternative: self means “the receiver”

• What's the difference?

12

An aside on self

• In the previous figure, self is treated just like
any other bound variable

• Alternative: self means “the receiver”

• What's the difference?

12

object {
! def mouseAction is public, readable = { self.click }
! method click is public { self.highlight; self.doIt }
! method doIt = { … }
}

13

from one to many

13

object {
 def x:Number is public, readable = 2
 def y:Number is public, readable = 3
 method distanceTo (other:Point) → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

from one to many

13

def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
 ! ! ! def x:Number is public, readable = xcoord
 ! ! ! def y:Number is public, readable = ycoord
 ! ! ! method distanceTo (other:Point) → Number {
 ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) } } } }

object {
 def x:Number is public, readable = 2
 def y:Number is public, readable = 3
 method distanceTo (other:Point) → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

from one to many

14

def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
 ! ! ! def x:Number is public, readable = xcoord
 ! ! ! def y:Number is public, readable = ycoord
 ! ! ! method distanceTo (other:Point) → Number {
 ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) } } } }

14

def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
 ! ! ! def x:Number is public, readable = xcoord
 ! ! ! def y:Number is public, readable = ycoord
 ! ! ! method distanceTo (other:Point) → Number {
 ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) } } } }

aPoint:

14

x()y()

def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
 ! ! ! def x:Number is public, readable = xcoord
 ! ! ! def y:Number is public, readable = ycoord
 ! ! ! method distanceTo (other:Point) → Number {
 ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) } } } }

methods

aPoint:

14

x()y()

def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
 ! ! ! def x:Number is public, readable = xcoord
 ! ! ! def y:Number is public, readable = ycoord
 ! ! ! method distanceTo (other:Point) → Number {
 ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) } } } }

methods aPoint is a class object

aPoint:

15

aPoint.x(2)y(3):

def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
 ! ! ! def x:Number is public, readable = xcoord
 ! ! ! def y:Number is public, readable = ycoord
 ! ! ! method distanceTo (other:Point) → Number {
 ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) } } } }

15

aPoint.x(2)y(3):

x

y

distance
To

def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
 ! ! ! def x:Number is public, readable = xcoord
 ! ! ! def y:Number is public, readable = ycoord
 ! ! ! method distanceTo (other:Point) → Number {
 ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) } } } }

methods

15

aPoint.x(2)y(3):

x

y

distance
To 2 3

captured
state

def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
 ! ! ! def x:Number is public, readable = xcoord
 ! ! ! def y:Number is public, readable = ycoord
 ! ! ! method distanceTo (other:Point) → Number {
 ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) } } } }

methods

15

aPoint.x(2)y(3):

x

y

distance
To 2 3

captured
state

def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
 ! ! ! def x:Number is public, readable = xcoord
 ! ! ! def y:Number is public, readable = ycoord
 ! ! ! method distanceTo (other:Point) → Number {
 ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) } } } }

methods

16

Inheritance‚ Version I

• Inheritance from objects
- restricted to “definitively static” objects, to

make the job of the static type-checker easier

object {
! inherits aPoint.x(2)y(3)
 def color is public, readable = aColor.black
}

17

object {
! inherits aPoint.x(2)y(3)
 def color is public, readable = aColor.black
}

17

1. Copy superobject

object {
! inherits aPoint.x(2)y(3)
 def color is public, readable = aColor.black
}

17

x

y
distance

To 2 3

captured
state

methods

1. Copy superobject

object {
! inherits aPoint.x(2)y(3)
 def color is public, readable = aColor.black
}

17

x

y
distance

To 2 3

captured
state

methods

1. Copy superobject
2. Append new features

object {
! inherits aPoint.x(2)y(3)
 def color is public, readable = aColor.black
}

17

x

y
distance

To 2 3

captured
state

methods

color
aColor.
black

1. Copy superobject
2. Append new features

Optimization: Copy
can be elided if safe

object {
! inherits aPoint.x(2)y(3)
 def color is public, readable = aColor.black
}

Conceptual Problem

• Every object from which one might wish to
inherit must have a copy method

18

Practical Problem
• Referential Transparency: creation of super-

object is oblivious to its context

19

def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
 ! ! ! def x:Number is public, readable = xcoord
 ! ! ! def y:Number is public, readable = ycoord
 ! ! ! method distanceTo (other:Point) → Number {
 ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) }
! ! ! ! registry.add(self)
! ! ! } } }

Practical Problem
• Referential Transparency: creation of super-

object is oblivious to its context

19

def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
 ! ! ! def x:Number is public, readable = xcoord
 ! ! ! def y:Number is public, readable = ycoord
 ! ! ! method distanceTo (other:Point) → Number {
 ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) }
! ! ! ! registry.add(self)
! ! ! } } } registration

part of object creation

Problem: Referential Transparency

• registry.add(self) registers the super-object
- this object is copied, then dropped

20

object {
! inherits aPoint.x(2)y(3)
 def color is public, readable = aColor.black
}

21

Inheritance‚ Version II
• Inheritance via object mutation
- restricted to “definitively static” objects
- restricted to “fresh” objects, to hide mutation

object {
! inherits aPoint.x(2)y(3)
 def color is public, readable = aColor.black
}

22

object {
! inherits aPoint.x(2)y(3)
 def color is public, readable = aColor.black
}

22

1. Start with actual superobject

object {
! inherits aPoint.x(2)y(3)
 def color is public, readable = aColor.black
}

22

x

y
distance

To 2 3

captured
state

methods

1. Start with actual superobject

object {
! inherits aPoint.x(2)y(3)
 def color is public, readable = aColor.black
}

22

x

y
distance

To 2 3

captured
state

methods

1. Start with actual superobject
2. Mutate it by adding
new features

object {
! inherits aPoint.x(2)y(3)
 def color is public, readable = aColor.black
}

22

x

y
distance

To 2 3

captured
state

methods

color
aColor.
black

1. Start with actual superobject
2. Mutate it by adding
new features

object {
! inherits aPoint.x(2)y(3)
 def color is public, readable = aColor.black
}

Problem: can’t inherit from objects

• “Freshness” requirement means that you
must inherit from object constructors, or copies

23

Problem: can’t inherit from objects

• “Freshness” requirement means that you
must inherit from object constructors, or copies

23

class SuccessfulMatch.new(result', bindings') {
 inherits true
 def result is public, readable = result'
 def bindings is public, readable = bindings'
 method asString {
 "SuccessfulMatch(result = {result}, bindings = {bindings})"
 }
}

Problem: can’t inherit from objects

• “Freshness” requirement means that you
must inherit from object constructors, or copies

23

class SuccessfulMatch.new(result', bindings') {
 inherits true
 def result is public, readable = result'
 def bindings is public, readable = bindings'
 method asString {
 "SuccessfulMatch(result = {result}, bindings = {bindings})"
 }
}

Problem: can’t inherit from objects

• “Freshness” requirement means that you
must inherit from object constructors, or copies

23

class SuccessfulMatch.new(result', bindings') {
 inherits true
 def result is public, readable = result'
 def bindings is public, readable = bindings'
 method asString {
 "SuccessfulMatch(result = {result}, bindings = {bindings})"
 }
}

Problem: can’t inherit from objects

• “Freshness” requirement means that you
must inherit from object constructors, or copies

23

Problem: can’t inherit from objects

• “Freshness” requirement means that you
must inherit from object constructors, or copies

23

• If we eliminate the freshness requirement, we
are visibly mutating “immutable” objects

Problem: can’t inherit from objects

• “Freshness” requirement means that you
must inherit from object constructors

24

Problem: can’t inherit from objects

• “Freshness” requirement means that you
must inherit from object constructors

24

def AssertionTrait = object {
! method assert(bb: Boolean)description(str) is public {
 if (! bb) …
! }
! method deny(bb: Boolean)description(str) is public {
! ! assert (! bb) description (str)
! }
! …
}

Problem: can’t inherit from objects

• “Freshness” requirement means that you
must inherit from object constructors

24

def AssertionTrait = object {
! method assert(bb: Boolean)description(str) is public {
 if (! bb) …
! }
! method deny(bb: Boolean)description(str) is public {
! ! assert (! bb) description (str)
! }
! …
}

Conclusion: copy is essential

• Both versions of inheritance need copy as a
primitive (built-in) method

• What does copy mean?

25

26

obj1

method1

method2

method3

obj2

obj3

obj4

26

obj1

method1

method2

method3

obj2

obj3

obj4

obj1.copy ?

26

obj1

method1

method2

method3

obj2

obj3

obj4

obj1.copy ?

obj'1

method'1

method'2

method'3

obj'2

obj'3

obj'4

26

obj1

method1

method2

method3

obj2

obj3

obj4

obj1.copy ?

obj'1

method'1

method'2

method'3

obj'2

obj'3

obj'4

Which objects to copy
and which to share?

26

obj1

method1

method2

method3

obj2

obj3

obj4

obj1.copy ?

obj'1

method'1

method'2

method'3

obj'2

obj'3

obj'4

Which objects to copy
and which to share?

26

obj1

method1

method2

method3

obj2

obj3

obj4

obj1.copy ?

obj'1

method'1

method'2

method'3

obj'2

obj'3

obj'4

Which objects to copy
and which to share?

27

obj1

method1

method2

method3

obj2

obj3

obj4

obj1.copy ?

obj'1

method'1

method'2

method'3

obj'3

s(x) = x ∈ { obj1, obj3, method1,
! ! ! ! ! ! ! ! ! ! ! ! method2, method3 }

Which objects to copy
and which to share?

27

obj1

method1

method2

method3

obj2

obj3

obj4

obj1.copy ?

obj'1

method'1

method'2

method'3

obj'3

s(x) = x ∈ { obj1, obj3, method1,
! ! ! ! ! ! ! ! ! ! ! ! method2, method3 }

27

obj1

method1

method2

method3

obj2

obj3

obj4

obj1.copy ?

obj'1

method'1

method'2

method'3

obj'3

s(x) = x ∈ { obj1, obj3, method1,
! ! ! ! ! ! ! ! ! ! ! ! method2, method3 }

copy should be
parameterized by a

predicate s that
determines which nodes

should be copied

28

• m,n 2 N is a set of Nodes (objects, variables, methods)

• x 2 L, a set of labels

• p, q 2 E ⇢ (N ⇥ L⇥N) is a set of Edges

(pointers, object references, variable references).

• If hm,x, ni 2 E, then node m has an edge labeled x

leading to node n, and we write m.x = n

• A path (of length k) ~x = x1x2 · · ·xk 2 L

k
is valid from a root node n0

exactly when 9n1, n2, . . . , nk 2 N such that hn0, x1, n1i 2 E, hn1, x2, n2i 2
E, . . . , hnk�1, xk, nki 2 E. We write n0.~x = nk

• F is a set of fresh nodes

• s 2 N ! Boolean is a shallowness function; if s(n) then n should be

copied, otherwise it should be shared.

• copys : N ! N [F is a function with the following properties:

1. s(n) ⌘ copys(n) 2 F

2. ¬s(n) ⌘ copys(n) = n

3. 8n 2 N, ~x 2 L

⇤
, copys(n.~x) ⌘ copys(n).~x

The last equivalence means that the path on the rhs is valid exactly web

the pasty on the lhs is valid, and that when both are valid, the object

graphs commute.

29

• m,n 2 N is a set of Nodes (objects, variables, methods)

• x 2 L, a set of labels

• p, q 2 E ⇢ (N ⇥ L⇥N) is a set of Edges

(pointers, object references, variable references).

• If hm,x, ni 2 E, then node m has an edge labeled x

leading to node n, and we write m.x = n

• A path (of length k) ~x = x1x2 · · ·xk 2 L

k
is valid from a root node n0

exactly when 9n1, n2, . . . , nk 2 N such that hn0, x1, n1i 2 E, hn1, x2, n2i 2
E, . . . , hnk�1, xk, nki 2 E. We write n0.~x = nk

• F is a set of fresh nodes

• s 2 N ! Boolean is a shallowness function; if s(n) then n should be

copied, otherwise it should be shared.

• copys : N ! N [F is a function with the following properties:

1. s(n) ⌘ copys(n) 2 F

2. ¬s(n) ⌘ copys(n) = n

3. 8n 2 N, ~x 2 L

⇤
, copys(n.~x) ⌘ copys(n).~x

The last equivalence means that the path on the rhs is valid exactly when

the path on the lhs is valid, and that when both are valid, the object

graphs commute.

obj1

method1

method2

method3

obj2x

self

m3

m1

29

• m,n 2 N is a set of Nodes (objects, variables, methods)

• x 2 L, a set of labels

• p, q 2 E ⇢ (N ⇥ L⇥N) is a set of Edges

(pointers, object references, variable references).

• If hm,x, ni 2 E, then node m has an edge labeled x

leading to node n, and we write m.x = n

• A path (of length k) ~x = x1x2 · · ·xk 2 L

k
is valid from a root node n0

exactly when 9n1, n2, . . . , nk 2 N such that hn0, x1, n1i 2 E, hn1, x2, n2i 2
E, . . . , hnk�1, xk, nki 2 E. We write n0.~x = nk

• F is a set of fresh nodes

• s 2 N ! Boolean is a shallowness function; if s(n) then n should be

copied, otherwise it should be shared.

• copys : N ! N [F is a function with the following properties:

1. s(n) ⌘ copys(n) 2 F

2. ¬s(n) ⌘ copys(n) = n

3. 8n 2 N, ~x 2 L

⇤
, copys(n.~x) ⌘ copys(n).~x

The last equivalence means that the path on the rhs is valid exactly when

the path on the lhs is valid, and that when both are valid, the object

graphs commute.

obj1

method1

method2

method3

obj2x

self

m3

m1

Paths from obj1:

obj1.m3.self = obj1

obj1.m1.x = obj2

29

• m,n 2 N is a set of Nodes (objects, variables, methods)

• x 2 L, a set of labels

• p, q 2 E ⇢ (N ⇥ L⇥N) is a set of Edges

(pointers, object references, variable references).

• If hm,x, ni 2 E, then node m has an edge labeled x

leading to node n, and we write m.x = n

• A path (of length k) ~x = x1x2 · · ·xk 2 L

k
is valid from a root node n0

exactly when 9n1, n2, . . . , nk 2 N such that hn0, x1, n1i 2 E, hn1, x2, n2i 2
E, . . . , hnk�1, xk, nki 2 E. We write n0.~x = nk

• F is a set of fresh nodes

• s 2 N ! Boolean is a shallowness function; if s(n) then n should be

copied, otherwise it should be shared.

• copys : N ! N [F is a function with the following properties:

1. s(n) ⌘ copys(n) 2 F

2. ¬s(n) ⌘ copys(n) = n

3. 8n 2 N, ~x 2 L

⇤
, copys(n.~x) ⌘ copys(n).~x

The last equivalence means that the path on the rhs is valid exactly when

the path on the lhs is valid, and that when both are valid, the object

graphs commute.

obj1

method1

method2

method3 obj'1copy

obj2x

self

m3

m1

Paths from obj1:

obj1.m3.self = obj1

obj1.m1.x = obj2

29

• m,n 2 N is a set of Nodes (objects, variables, methods)

• x 2 L, a set of labels

• p, q 2 E ⇢ (N ⇥ L⇥N) is a set of Edges

(pointers, object references, variable references).

• If hm,x, ni 2 E, then node m has an edge labeled x

leading to node n, and we write m.x = n

• A path (of length k) ~x = x1x2 · · ·xk 2 L

k
is valid from a root node n0

exactly when 9n1, n2, . . . , nk 2 N such that hn0, x1, n1i 2 E, hn1, x2, n2i 2
E, . . . , hnk�1, xk, nki 2 E. We write n0.~x = nk

• F is a set of fresh nodes

• s 2 N ! Boolean is a shallowness function; if s(n) then n should be

copied, otherwise it should be shared.

• copys : N ! N [F is a function with the following properties:

1. s(n) ⌘ copys(n) 2 F

2. ¬s(n) ⌘ copys(n) = n

3. 8n 2 N, ~x 2 L

⇤
, copys(n.~x) ⌘ copys(n).~x

The last equivalence means that the path on the rhs is valid exactly when

the path on the lhs is valid, and that when both are valid, the object

graphs commute.

obj1

method1

method2

method3 obj'1copy

method'1

method'2

method'3
copy

copy
copy

obj2x

self

m3

m1

Paths from obj1:

obj1.m3.self = obj1

obj1.m1.x = obj2

29

• m,n 2 N is a set of Nodes (objects, variables, methods)

• x 2 L, a set of labels

• p, q 2 E ⇢ (N ⇥ L⇥N) is a set of Edges

(pointers, object references, variable references).

• If hm,x, ni 2 E, then node m has an edge labeled x

leading to node n, and we write m.x = n

• A path (of length k) ~x = x1x2 · · ·xk 2 L

k
is valid from a root node n0

exactly when 9n1, n2, . . . , nk 2 N such that hn0, x1, n1i 2 E, hn1, x2, n2i 2
E, . . . , hnk�1, xk, nki 2 E. We write n0.~x = nk

• F is a set of fresh nodes

• s 2 N ! Boolean is a shallowness function; if s(n) then n should be

copied, otherwise it should be shared.

• copys : N ! N [F is a function with the following properties:

1. s(n) ⌘ copys(n) 2 F

2. ¬s(n) ⌘ copys(n) = n

3. 8n 2 N, ~x 2 L

⇤
, copys(n.~x) ⌘ copys(n).~x

The last equivalence means that the path on the rhs is valid exactly when

the path on the lhs is valid, and that when both are valid, the object

graphs commute.

obj1

method1

method2

method3 obj'1copy

method'1

method'2

method'3
copy

copy
copy

obj2x

self

m3

m1

Paths from copy(obj1) = obj

0
1:

obj

0
1.m3.self = obj

0
1

obj

0
1.m1.x = obj2

Paths from obj1:

obj1.m3.self = obj1

obj1.m1.x = obj2

30

obj1

method1

method2

method3

obj2

obj3

obj4

obj1.copy ?

s(x) = x ∈ { obj1, obj3, method1,
! ! ! ! ! ! ! ! ! ! ! ! method2, method3 }

Which objects to copy
and which to share?

vu

x

m2

30

obj1

method1

method2

method3

obj2

obj3

obj4

obj1.copy ?

s(x) = x ∈ { obj1, obj3, method1,
! ! ! ! ! ! ! ! ! ! ! ! method2, method3 }

vu

x

m2

30

obj1

method1

method2

method3

obj2

obj3

obj4

obj1.copy ?

s(x) = x ∈ { obj1, obj3, method1,
! ! ! ! ! ! ! ! ! ! ! ! method2, method3 }

vu

x

m2

31

obj1

method1

method2

method3

obj2

obj3

obj4

obj1.copy ?

obj'1

method'1

method'2

method'3

obj'3

s(x) = x ∈ { obj1, obj3, method1,
! ! ! ! ! ! ! ! ! ! ! ! method2, method3 }

v

m2

v

u

u

x

m2

Paths from obj1:

obj1.m2.u.v = obj4

obj1.m2.u.v.x = obj1

Paths from copys(obj1) :

obj

0
1.m2.u.v = obj4

obj

0
1.m2.u.v.x = obj1

wrong!

31

obj1

method1

method2

method3

obj2

obj3

obj4

obj1.copy ?

obj'1

method'1

method'2

method'3

obj'3

s(x) = x ∈ { obj1, obj3, method1,
! ! ! ! ! ! ! ! ! ! ! ! method2, method3 }

v

m2

v

u

u

x

m2

Paths from obj1:

obj1.m2.u.v = obj4

obj1.m2.u.v.x = obj1

Paths from copys(obj1) :

obj

0
1.m2.u.v = obj4

obj

0
1.m2.u.v.x = obj1

wrong!

32

Definition of Copy
• Nothing you didn't know
- but I've never seen this formalized

- and we got it wrong in the Grace compiler

• For some s, there can be no correct copys

• Copy can be implemented in Grace
- with sufficient meta-level operations

- includes reflecting on the bound variables of
methods.

Trait Proposal

• trait { … } means the same as object { … }
- with the restriction that methods can’t close

over variables other than self

‣ no useful object-local variables

• using a trait is essentially equivalent to
delegating to the trait methods
- self is bound dynamically to the object

receiving the method request

33

34

class SuccessfulMatch.new(result', bindings') {
 inherits true
 def result = result'
 def bindings = bindings'
 method asString {
 "SuccessfulMatch(result = {result}, bindings = {bindings})"
 }
}

• Perfectly OK — true has no state
- just methods like:

method or(another:Block) { self }
method and(another:Block) { another.apply }

34

class SuccessfulMatch.new(result', bindings') {
 inherits true
 def result = result'
 def bindings = bindings'
 method asString {
 "SuccessfulMatch(result = {result}, bindings = {bindings})"
 }
}

Objects as Traits

• What about objects with captured state?
- all objects using them get to share the same

state

• Not what you want?
- copy the object, or generate a fresh object

35

36

object serialNumber {
! def rawSerial = aRandom.between(10^12)and((10^13) -1)
! def checkDigits = calculateCheckDigitsFor(rawSerial)
! def serial is public, readable
! ! = rawSerial.asString ++ checkDigits.asString
}

36

object serialNumber {
! def rawSerial = aRandom.between(10^12)and((10^13) -1)
! def checkDigits = calculateCheckDigitsFor(rawSerial)
! def serial is public, readable
! ! = rawSerial.asString ++ checkDigits.asString
}

class engine.ofSize(volume) {
! uses serialNumber
! def displacement is public, readable = volume
! def cylinders is public, readable = 6
}

36

object serialNumber {
! def rawSerial = aRandom.between(10^12)and((10^13) -1)
! def checkDigits = calculateCheckDigitsFor(rawSerial)
! def serial is public, readable
! ! = rawSerial.asString ++ checkDigits.asString
}

class engine.ofSize(volume) {
! uses serialNumber
! def displacement is public, readable = volume
! def cylinders is public, readable = 6
}

• Every engine has the same serial

36

object serialNumber {
! def rawSerial = aRandom.between(10^12)and((10^13) -1)
! def checkDigits = calculateCheckDigitsFor(rawSerial)
! def serial is public, readable
! ! = rawSerial.asString ++ checkDigits.asString
}

class engine.ofSize(volume) {
! uses serialNumber
! def displacement is public, readable = volume
! def cylinders is public, readable = 6
}

• Every engine has the same serial

37

class serialNumber.new {
! def rawSerial = aRandom.between(10^12)and((10^13) -1)
! def checkDigits = calculateCheckDigitsFor(rawSerial)
! def serial is public, readable
! ! = rawSerial.asString ++ checkDigits.asString
}

37

class serialNumber.new {
! def rawSerial = aRandom.between(10^12)and((10^13) -1)
! def checkDigits = calculateCheckDigitsFor(rawSerial)
! def serial is public, readable
! ! = rawSerial.asString ++ checkDigits.asString
}

class engine.ofSize(volume) {
! uses serialNumber.new
! def displacement is public, readable = volume
! def cylinders is public, readable = 6
}

37

class serialNumber.new {
! def rawSerial = aRandom.between(10^12)and((10^13) -1)
! def checkDigits = calculateCheckDigitsFor(rawSerial)
! def serial is public, readable
! ! = rawSerial.asString ++ checkDigits.asString
}

class engine.ofSize(volume) {
! uses serialNumber.new
! def displacement is public, readable = volume
! def cylinders is public, readable = 6
}

37

class serialNumber.new {
! def rawSerial = aRandom.between(10^12)and((10^13) -1)
! def checkDigits = calculateCheckDigitsFor(rawSerial)
! def serial is public, readable
! ! = rawSerial.asString ++ checkDigits.asString
}

class engine.ofSize(volume) {
! uses serialNumber.new
! def displacement is public, readable = volume
! def cylinders is public, readable = 6
}

37

class serialNumber.new {
! def rawSerial = aRandom.between(10^12)and((10^13) -1)
! def checkDigits = calculateCheckDigitsFor(rawSerial)
! def serial is public, readable
! ! = rawSerial.asString ++ checkDigits.asString
}

class engine.ofSize(volume) {
! uses serialNumber.new
! def displacement is public, readable = volume
! def cylinders is public, readable = 6
}

• Every engine has a new serial

37

class serialNumber.new {
! def rawSerial = aRandom.between(10^12)and((10^13) -1)
! def checkDigits = calculateCheckDigitsFor(rawSerial)
! def serial is public, readable
! ! = rawSerial.asString ++ checkDigits.asString
}

class engine.ofSize(volume) {
! uses serialNumber.new
! def displacement is public, readable = volume
! def cylinders is public, readable = 6
}

• Every engine has a new serial✓

• Object initialization is not the same as object
creation

• Smalltalk makes this clear:
Behavior ›› new
! "Answer a new initialized instance of the
! receiver (which is a class) ..."
! ↑ self basicNew initialize

- Behavior ›› basicNew creates the object

- Instance ›› initialize assigns to fields, registers it, etc.

38

Inheriting Initialization

• Easy: inherit the initialize method
- in Smalltalk, this is a real method

- in Java, it’s a “special” method called "<init>"

• Pharo Smalltalk and Java classes both invoke
initialization automatically
- a%er the object has been created

• If we want to inherit initialization in Grace, we
can do the same thing

39

Inheriting Initialization

def initializable is public, readable = trait {
 method create { done }
 method new is public {
 def instance = self.create
 instance.initialize
 instance
 }
}

40

Inheriting Initialization

• Captures the separation of creation and
initialization as a trait

def initializable is public, readable = trait {
 method create { done }
 method new is public {
 def instance = self.create
 instance.initialize
 instance
 }
}

40

Inheriting Initialization

• Captures the separation of creation and
initialization as a trait

new method creates
and initializes

Using the Initialization Trait
def aWindow = object {

 uses initializable
 method create is override {
 object {
 var bounds is public, readable, writable
 method paint(c) is public { … }
 method initialize is public {
 world.register(self) }
 method minimize is public { … } }
 }
 method withBounds(b) is public {
 def instance = self.create
 instance.bounds := b
 instance.initialize
 }
}

41

Using the Initialization Trait
def aWindow = object {

 uses initializable
 method create is override {
 object {
 var bounds is public, readable, writable
 method paint(c) is public { … }
 method initialize is public {
 world.register(self) }
 method minimize is public { … } }
 }
 method withBounds(b) is public {
 def instance = self.create
 instance.bounds := b
 instance.initialize
 }
}

41

gets us the create
and new methods

Using the Initialization Trait
def aWindow = object {

 uses initializable
 method create is override {
 object {
 var bounds is public, readable, writable
 method paint(c) is public { … }
 method initialize is public {
 world.register(self) }
 method minimize is public { … } }
 }
 method withBounds(b) is public {
 def instance = self.create
 instance.bounds := b
 instance.initialize
 }
}

41

Using the Initialization Trait
def aWindow = object {

 uses initializable
 method create is override {
 object {
 var bounds is public, readable, writable
 method paint(c) is public { … }
 method initialize is public {
 world.register(self) }
 method minimize is public { … } }
 }
 method withBounds(b) is public {
 def instance = self.create
 instance.bounds := b
 instance.initialize
 }
}

41

aWindow.withBounds(aRectangle.
topLeft(100@100)diagonal(50@50))

Using the Initialization Trait
def aWindow = object {

 uses initializable
 method create is override {
 object {
 var bounds is public, readable, writable
 method paint(c) is public { … }
 method initialize is public {
 world.register(self) }
 method minimize is public { … } }
 }
 method withBounds(b) is public {
 def instance = self.create
 instance.bounds := b
 instance.initialize
 }
}

41

aWindow.withBounds(aRectangle.
topLeft(100@100)diagonal(50@50))

creates and
sets bounds of a new

window

Using the Initialization Trait
def aWindow = object {

 uses initializable
 method create is override {
 object {
 var bounds is public, readable, writable
 method paint(c) is public { … }
 method initialize is public {
 world.register(self) }
 method minimize is public { … } }
 }
 method withBounds(b) is public {
 def instance = self.create
 instance.bounds := b
 instance.initialize
 }
}

41

aWindow.withBounds(aRectangle.
topLeft(100@100)diagonal(50@50))

Using the Initialization Trait
def aWindow = object {

 uses initializable
 method create is override {
 object {
 var bounds is public, readable, writable
 method paint(c) is public { … }
 method initialize is public {
 world.register(self) }
 method minimize is public { … } }
 }
 method withBounds(b) is public {
 def instance = self.create
 instance.bounds := b
 instance.initialize
 }
}

41

aWindow.withBounds(aRectangle.
topLeft(100@100)diagonal(50@50))

aWindow.new

Using the Initialization Trait
def aWindow = object {

 uses initializable
 method create is override {
 object {
 var bounds is public, readable, writable
 method paint(c) is public { … }
 method initialize is public {
 world.register(self) }
 method minimize is public { … } }
 }
 method withBounds(b) is public {
 def instance = self.create
 instance.bounds := b
 instance.initialize
 }
}

41

aWindow.withBounds(aRectangle.
topLeft(100@100)diagonal(50@50))

aWindow.new

creates a new,
initialized window with

undefined bounds

Using the Initialization Trait
def aWindow = object {

 uses initializable
 method create is override {
 object {
 var bounds is public, readable, writable
 method paint(c) is public { … }
 method initialize is public {
 world.register(self) }
 method minimize is public { … } }
 }
 method withBounds(b) is public {
 def instance = self.create
 instance.bounds := b
 instance.initialize
 }
}

41

aWindow.withBounds(aRectangle.
topLeft(100@100)diagonal(50@50))

aWindow.new

What About Classes?
Currently

class A.name {
! inherits S
! defs, vars and methods }

means
def A = object {
! ! method name { object {
! ! ! inherits S
! ! ! defs, vars and methods }
! } }

We can change this!

42

Summary

• Don't “build in” complex features

• Start with general-purpose building blocks
- Complex features can be fabricated from the

building blocks

- They will inevitably be consistent

43

