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Disclaimer

The views expressed here are my own, 
and may not be representative of those of 

the Grace design team

Disagreement has had a powerful beneficial 
effect on the design of Grace
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Background on Traits
• “Traits” = Smalltalk traits as described by 

Schärli et al. [ECOOP 2004, TOPLAS 2006]:
- algebra of method combination
- a trait is a set of named methods with operations 

+, -, @ and uses
- traits have no state; just pure methods and 

bindings to self

• There are other definitions of trait, e.g.,
- Curry et al. [SIGOA 1982]
- Reppy & Turon [ECOOP 2007]
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What’s Good about Traits
• “Despite their relative simplicity, traits offer a 

surprisingly rich calculus.” [Reppy & Turon 2007]

• “more nimble and lighter-weight than either 
multiple inheritance or mixins” [ibid.]

- but you can do MI and mixin-like stuff with traits

• Separates the unit of reuse (the trait) from the 
generator of objects (the class)
- Classes struggle to fill both roles:

Complete, 
monolithic 

Fine-grained, 
often incomplete



Grace doesn’t have Traits
and I agreed to this!

• Why?
- Designed for teaching, not large-scale software 

engineering
‣ So code reuse is not so important (?)

- Traits are not “mainstream”
‣ We need to teach what is in common use

- Inheritance is “mainstream” object-orientation
‣ So Grace must contain inheritance

-  Grace is small and simple
‣ So it should not have two reuse mechanisms
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Andrew’s working hypothesis
• It's possible, in Grace to:
- provide something very like traits using objects

- build something very like inheritance out of traits

- build more than one variety of inheritance

• This is a Good Idea because:

- Core Grace would have one reuse mechanism, but

- Grace could be used to teach a variety of reuse 
mechanisms
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• Everything is an Object
- but every object is not an instance of a class

• Instead: objects are self-contained

• Objects are created by executing an object constructor
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object {
   def x:Number is public, readable = 2
   def y:Number is public, readable = 3
   method distanceTo (other:Point) → Number {
      ((x - other.x)^2 + (y - other.y)^2) } }

Objects in Grace
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To 2 3

object {
   def x:Number is public, readable = 2
   def y:Number is public, readable = 3
   method distanceTo (other:Point) → Number {
      ((x - other.x)^2 + (y - other.y)^2) } }

methods
captured 

state

self.x



Notice:

• Nothing in an object but methods

• No “instance variables” per se
- methods can capture any def or var in scope

• Objects can be created with interesting fields
- makes it simple to define simple objects

- the only way to create objects with def fields
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An aside on self

• In the previous figure, self is treated just like 
any other bound variable

• Alternative: self means “the receiver”

• What's the difference?
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object {
! def mouseAction is public, readable = { self.click }
! method click is public { self.highlight; self.doIt }
! method doIt = { … }
}
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from one to many



13

object {
   def x:Number is public, readable = 2
   def y:Number is public, readable = 3
   method distanceTo (other:Point) → Number {
      ((x - other.x)^2 + (y - other.y)^2) } }

from one to many
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def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
   ! ! ! def x:Number is public, readable = xcoord
   ! ! ! def y:Number is public, readable = ycoord
   ! ! ! method distanceTo (other:Point) → Number {
      ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) } } } }

object {
   def x:Number is public, readable = 2
   def y:Number is public, readable = 3
   method distanceTo (other:Point) → Number {
      ((x - other.x)^2 + (y - other.y)^2) } }

from one to many
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x()y()

def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
   ! ! ! def x:Number is public, readable = xcoord
   ! ! ! def y:Number is public, readable = ycoord
   ! ! ! method distanceTo (other:Point) → Number {
      ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) } } } }

methods aPoint is a class object

aPoint:
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aPoint.x(2)y(3):

def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
   ! ! ! def x:Number is public, readable = xcoord
   ! ! ! def y:Number is public, readable = ycoord
   ! ! ! method distanceTo (other:Point) → Number {
      ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) } } } }
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methods
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Inheritance‚ Version I

• Inheritance from objects
- restricted to “definitively static” objects, to 

make the job of the static type-checker easier

object {
! inherits aPoint.x(2)y(3)
   def color is public, readable = aColor.black
}
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object {
! inherits aPoint.x(2)y(3)
   def color is public, readable = aColor.black
}
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1. Copy superobject

object {
! inherits aPoint.x(2)y(3)
   def color is public, readable = aColor.black
}
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methods

1. Copy superobject
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x

y
distance

To 2 3

captured 
state

methods

1. Copy superobject
2. Append new features

object {
! inherits aPoint.x(2)y(3)
   def color is public, readable = aColor.black
}
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x

y
distance

To 2 3

captured 
state

methods

color
aColor.
black

1. Copy superobject
2. Append new features

Optimization: Copy 
can be elided if safe

object {
! inherits aPoint.x(2)y(3)
   def color is public, readable = aColor.black
}



Conceptual Problem

• Every object from which one might wish to 
inherit must have a copy method 
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Practical Problem
• Referential Transparency: creation of super-

object is oblivious to its context

19

def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
   ! ! ! def x:Number is public, readable = xcoord
   ! ! ! def y:Number is public, readable = ycoord
   ! ! ! method distanceTo (other:Point) → Number {
      ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) } 
! ! ! ! registry.add(self)
! ! ! } } }



Practical Problem
• Referential Transparency: creation of super-

object is oblivious to its context
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def aPoint = object {
! ! method x(xcoord)y(ycoord) {
! ! ! object {
   ! ! ! def x:Number is public, readable = xcoord
   ! ! ! def y:Number is public, readable = ycoord
   ! ! ! method distanceTo (other:Point) → Number {
      ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) } 
! ! ! ! registry.add(self)
! ! ! } } } registration 

part of object creation



Problem: Referential Transparency

• registry.add(self) registers the super-object
- this object is copied, then dropped
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object {
! inherits aPoint.x(2)y(3)
   def color is public, readable = aColor.black
}
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Inheritance‚ Version II
• Inheritance via object mutation
- restricted to “definitively static” objects
- restricted to “fresh” objects, to hide mutation

object {
! inherits aPoint.x(2)y(3)
   def color is public, readable = aColor.black
}
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object {
! inherits aPoint.x(2)y(3)
   def color is public, readable = aColor.black
}
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1. Start with actual superobject

object {
! inherits aPoint.x(2)y(3)
   def color is public, readable = aColor.black
}
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Problem: can’t inherit from objects

• “Freshness” requirement means that you 
must inherit from object constructors, or copies
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class SuccessfulMatch.new(result', bindings') {
    inherits true
    def result is public, readable = result'
    def bindings is public, readable = bindings'
    method asString {
        "SuccessfulMatch(result = {result}, bindings = {bindings})"
    }
}
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• If we eliminate the freshness requirement, we 
are visibly mutating “immutable” objects
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Problem: can’t inherit from objects

• “Freshness” requirement means that you 
must inherit from object constructors
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def AssertionTrait = object {
! method assert(bb: Boolean)description(str) is public {
        if (! bb) …
! }
! method deny(bb: Boolean)description(str) is public {
! ! assert (! bb) description (str)
! }
! …
}
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Conclusion: copy is essential

• Both versions of inheritance need copy as a 
primitive (built-in) method

• What does copy mean?
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determines which nodes 

should be copied
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• m,n 2 N is a set of Nodes (objects, variables, methods)

• x 2 L, a set of labels

• p, q 2 E ⇢ (N ⇥ L⇥N) is a set of Edges

(pointers, object references, variable references).

• If hm,x, ni 2 E, then node m has an edge labeled x

leading to node n, and we write m.x = n

• A path (of length k) ~x = x1x2 · · ·xk 2 L

k
is valid from a root node n0

exactly when 9n1, n2, . . . , nk 2 N such that hn0, x1, n1i 2 E, hn1, x2, n2i 2
E, . . . , hnk�1, xk, nki 2 E. We write n0.~x = nk

• F is a set of fresh nodes

• s 2 N ! Boolean is a shallowness function; if s(n) then n should be

copied, otherwise it should be shared.

• copys : N ! N [ F is a function with the following properties:

1. s(n) ⌘ copys(n) 2 F

2. ¬s(n) ⌘ copys(n) = n

3. 8n 2 N, ~x 2 L

⇤
, copys(n.~x) ⌘ copys(n).~x

The last equivalence means that the path on the rhs is valid exactly web

the pasty on the lhs is valid, and that when both are valid, the object

graphs commute.
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• s 2 N ! Boolean is a shallowness function; if s(n) then n should be

copied, otherwise it should be shared.

• copys : N ! N [ F is a function with the following properties:

1. s(n) ⌘ copys(n) 2 F

2. ¬s(n) ⌘ copys(n) = n

3. 8n 2 N, ~x 2 L

⇤
, copys(n.~x) ⌘ copys(n).~x

The last equivalence means that the path on the rhs is valid exactly when

the path on the lhs is valid, and that when both are valid, the object

graphs commute.
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Definition of Copy
• Nothing you didn't know
- but I've never seen this formalized

- and we got it wrong in the Grace compiler

• For some s, there can be no correct copys

• Copy can be implemented in Grace 
- with sufficient meta-level operations

- includes reflecting on the bound variables of 
methods.



Trait Proposal 

• trait { … } means the same as object { … }
- with the restriction that methods can’t close 

over variables other than self

‣ no useful object-local variables

• using a trait is essentially equivalent to 
delegating to the trait methods
- self is bound dynamically to the object 

receiving the method request

33
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class SuccessfulMatch.new(result', bindings') {
    inherits true
    def result = result'
    def bindings = bindings'
    method asString {
        "SuccessfulMatch(result = {result}, bindings = {bindings})"
    }
}



• Perfectly OK — true has no state
- just methods like:

method or(another:Block) { self }
method and(another:Block) { another.apply } 

34
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    }
}



Objects as Traits

• What about objects with captured state?
- all objects using them get to share the same 

state

• Not what you want?
- copy the object, or generate a fresh object
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object serialNumber {
! def rawSerial = aRandom.between(10^12)and((10^13) -1)
! def checkDigits = calculateCheckDigitsFor(rawSerial)
! def serial is public, readable 
! ! = rawSerial.asString ++ checkDigits.asString 
}
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class serialNumber.new {
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• Object initialization is not the same as object 
creation

• Smalltalk makes this clear:
Behavior ›› new
! "Answer a new initialized instance of the
! receiver (which is a class) ..."
! ↑ self basicNew initialize

- Behavior ›› basicNew creates the object

- Instance ›› initialize assigns to fields, registers it, etc.

38

Inheriting Initialization



• Easy: inherit the initialize method
- in Smalltalk, this is a real method

- in Java, it’s a “special” method called "<init>"

• Pharo Smalltalk and Java classes both invoke 
initialization automatically
- a%er the object has been created 

• If we want to inherit initialization in Grace, we 
can do the same thing
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Inheriting Initialization



def initializable is public, readable = trait {
    method create { done }
    method new is public {
        def instance = self.create
        instance.initialize
        instance
    }
}

40

Inheriting Initialization

• Captures the separation of creation and 
initialization as a trait



def initializable is public, readable = trait {
    method create { done }
    method new is public {
        def instance = self.create
        instance.initialize
        instance
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}

40

Inheriting Initialization

• Captures the separation of creation and 
initialization as a trait

new method creates 
and initializes



Using the Initialization Trait
def aWindow = object {

    uses initializable
    method create  is override {
        object {
            var bounds is public, readable, writable
            method paint(c) is public { … }
            method initialize is public {
                world.register(self) }
            method minimize is public { … }        }
    }
    method withBounds(b) is public {
        def instance = self.create
        instance.bounds := b
        instance.initialize
    }
}
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41
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and new methods
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What About Classes?
Currently

class A.name {  
! inherits S
! defs, vars and methods }

means
def A = object {
! ! method name  {   object  {
! ! ! inherits S
! ! ! defs, vars and methods }
! } } 

We can change this!

42



Summary

• Don't “build in” complex features

• Start with general-purpose building blocks
- Complex features can be fabricated from the 

building blocks

- They will inevitably be consistent
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