
Forsaking Inheritance:
Supercharged Delegation

in DelphJ

Yannis Smaragdakis
University of Athens

joint work with Prodromos Gerakios
and Aggelos Biboudis,

building on work by Shan Shan Huang

Research sponsors:

Inheritance: A Love-Hate Affair
(we love to hate it)

 Confusing
 subtyping vs. subclassing

 Coarse-grained
 inherit all-or-nothing

 Bad for reuse
 a reuse mechanism that plays badly

when one wants to reuse from more than
one place!

 Rigid
 fixed at subclass development time

Yannis Smaragdakis
University of Athens

2

Alternative: Delegation

 class Refinement {
 Base b;
 void foo() {… b.foo(); … }
}

 Completely manual
 need to forward explicitly

Yannis Smaragdakis
University of Athens

3

Our Past Work: Morphing

 Can make delegation more automatic
 consultation or forwarding

 class Logger {
 Subj ref;
 …
 <R,A>[m] for (R m(A): Subj.methods)
 R m (A a) {
 log(m.name, a);
 return ref.m(a);
 }
}

Yannis Smaragdakis
University of Athens

4

More Morphing

 Can do a lot more

 class Listify {
 Subj ref;
 …
 <R,A>[m] for (R m(A): Subj.methods)
 R m (List<A> a) {
 … // call m for all list elements
 }
}

Yannis Smaragdakis
University of Athens

5

Morphing Still No Substitute
For Inheritance

 No late binding
 cannot change reused functionality

 class C {
 Subj ref; // Subj defines and calls foo
 …
 <R,A>[m] for (R m(A): Subj.methods)
 R m (A a) { …
 return ref.m(a);
 }
 void foo() {…}
}

Yannis Smaragdakis
University of Athens

6X

Mechanisms Combining
Delegation and Late Binding

 There are past mechanisms combining
delegation and late binding
 Kniesel’s work, Ostermann’s, others

 But this makes delegation be more like
inheritance
 automatically forward all methods, not the ones

chosen

 Need to combine with morphing
 we next see our current design

Yannis Smaragdakis
University of Athens

7

New Construct: subobject

 Per-field late binding designations
 obvious question: is field mutable?

 class Logger {
 subobject Subj ref;
 …
 <R,A>[m] for (R m(A): Subj.methods)
 R m (A a) {
 log(m.name, a);
 return ref.m(a);
 }
}

Yannis Smaragdakis
University of Athens

88

The Good Part

 Works fine for our original problems
 e.g., multiple subobjects

 class GradStudent {
 subobject Student sref;
 subobject Employee eref;
 …
 <R,A>[m]
 for (R m(A): Student.methods;
 no R m(A): Employee.methods)
 R m (A a) { … }
 … // handle other two cases
}

Yannis Smaragdakis
University of Athens

9

Subtlety: Accidental Overriding
(avoided)

 interface I { void meth(); }
class Unsuspecting implements I {…}

class C {
 subobject I ref;
 C(I i) { ref = i; }
 …
 void foo() {…}
}
C c = new C(new Unsuspecting());

 If Unsuspecting defines a foo, should c
override it with C’s version?

Yannis Smaragdakis
University of Athens

10

Subtlety: Accidental Overriding
(avoided)

 interface I { void meth(); }
class Unsuspecting implements I {…}

class C {
 subobject I ref;
 C(I i) { ref = i; }
 …
 void foo() {…}
}
C c = new C(new Unsuspecting());

 Our policy: can override only non-final methods
that are declared in static type of subobject field

Yannis Smaragdakis
University of Athens

11

Subtlety: Per-Field Late
Binding?

 Inheritance has it easy: the superclass
subobject is both owned and immutable
 we explored a fully liberal design
 subobjects can be aliased by multiple wrapper

objects
 subobject fields are mutable

 Severe consequences for execution (and
semantics)
 alternative past designs had the object itself keep

a notion of “self”, different from “this”
Yannis Smaragdakis
University of Athens

12

Aliasing

Yannis Smaragdakis
University of Athens

1313

???

Access Paths

 Wrapping of subobject captured in references!
 references in our design are heavy-duty

 class Wrapper {
 subobject Subj ref; …
}
Subj subj = new Subj(); // object s1
Wrapper w1 = new Wrapper(subj); // object o1
Wrapper w2 = new Wrapper(subj); // object o2
Subj alias = w2.ref;

 subj and alias not same!
 alias == o2->refs1

Yannis Smaragdakis
University of Athens

14

When Do These Change?

 Access paths are copied on every reference
assignment, built up on field write

 Subj subj1 = new Subj(); // object s1
Subj subj2 = new Subj(); // object s2
Wrapper w1 = new Wrapper(subj1); // object o1
Wrapper w2 = new Wrapper(subj2); // object o2
Subj aliasForS2 = w2.ref;
w1.ref = aliasForS2;

 One way to view: only keep last object of assigned
ref’s access path, append to lhs of assignment
 w1.ref == aliasForS2 == o2->refs2

Yannis Smaragdakis
University of Athens

15

Another Way to View

 Every stack reference represents a full access
path but heap references do not

 Subj subj1 = new Subj(); // object s1
Subj subj2 = new Subj(); // object s2
Wrapper w1 = new Wrapper(subj1); // object o1
Wrapper w2 = new Wrapper(subj2); // object o2
Subj aliasForS2 = w2.ref;
w1.ref = aliasForS2;

 Access paths built up on field read
 w1.ref == w2.ref == s2

 aliasForS2 == o2->refs2

Yannis Smaragdakis
University of Athens

16

Also Prevents Surprises with
Mutable References

Yannis Smaragdakis
University of Athens

1717

 Since we have per-reference access path:
this does not change by mere
reassignment of wrapper fields

To Summarize

 Morphing can emulate inheritance and
address its shortcomings
 automation but with control

 no all-or-nothing reuse
 no conflicts when reusing from multiple sources
 real reuse: single pattern for many methods

 all with modular type safety
 everything works with generic/unknown field types

Yannis Smaragdakis
University of Athens

18

Caveats

 But need deep delegation
 Subtle, complex consequences of per-field

late binding
 aliasing of subobjects seems inevitable
 mutability of subobject references a design choice

 Is this a reasonable programming model?
 Can it be implemented efficiently?

 a reference becomes an entire data structure!

Yannis Smaragdakis
University of Athens

19

