
QuickCheck your language
design*

Cătălin Hrițcu, John Hughes, Benjamin C. Pierce,
Antal Spector-Zabusky, Dimitrios Vytiniotis,

Arthur Azevedo de Amorim, Leonidas Lampropoulos

*based on Testing noninterference, quickly (ICFP 2013)

• Suppose you want to guarantee…
– Type safety

– Confidentiality

– …other global properties

• Based on…

– Static checks

– Run-time checks

– …

• How can you get your design right?

–And do it quickly—for design exploration

• Dynamic Information Flow Control
– Taints secrets at run-time

– Interrupts execution if a secret is about to leak

• Guarantees confidentiality

– A ”low observer” can infer nothing about high
values

• Our experiment
– A low-level abstract machine with dynamic IFC

– Show how to find all of a reasonable class of bugs
quickly

A simple stack-and-memory machine

• values = integers

• stack = list of values

instruction stack before stack after memory

Push n stk n : stk

Pop n : stk stk

Add n : m : stk (n+m) : stk

Load a : stk mem[a] : stk

Store a : n : stk stk mem[a] := n

Halt stk ----

• memory = list of values

4

A simple information-flow machine

• values = labeled integers

• stack = list of values

instruction stack before stack after memory

Push n@X stk n@X : stk

Pop n@X : stk stk

Add n@X : m@Y :stk (n+m)@? : stk

Load a@X : stk mem[a] : stk

Store a@X : n@Y : stk stk mem[a] := n@?

Halt stk ----

• labels = L and H

• memory = list of values

5

A simple information-flow machine

• values = labeled integers

• stack = list of values

instruction stack before stack after memory

Push n@X stk n@X : stk

Pop n@X : stk stk

Add n@X : m@Y :stk (n+m)@L : stk

Load a@X : stk mem[a] : stk

Store a@X : n@Y : stk stk mem[a] := n@L

Halt stk ----

• labels = L and H

• memory = list of values

6

Noninterference (EENI)

• “secret inputs don’t affect public outputs”

– secret inputs = numbers labeled H in initial state

• initial state = empty stack, memory all 0@L,
instructions can contain secrets (Push 0@H)

– public outputs = memory labeled L in halted state

• more precisely:

– forall i1 i2, if i1 ≈ i2 and i1 →* h1 and i2 →* h2
 then mem(h1) ≈ mem(h2)

– n1@L ≈ n2@L iff n1=n2 n1@H ≈ n2@H always

7

Bugs

Counterexample #1

9

instruction stack before stack after memory

Store a@X : n@Y : stk stk mem[a] := n@Y

Fixing bug in Store

memory stack next instruction

[0@L] [] Push {0/1}@H

[0@L] [{0/1}@H] Push 0@L

[0@L] [0@L,{0/1}@H] Store

[{0/1}@L] [] Halt

Counterexample #2
memory stack next instruction

[0@L,0@L] [] Push 1@L

[0@L,0@L] [1@L] Push {0/1}@H

[0@L,0@L] [{0/1}@H,1@L] Store

[{1/0}@L,{0/1}@L] [] Halt

10

instruction stack before stack after memory

Store a@X : n@Y : stk stk mem[a] := n@X⨆Y

Fixing 2nd bug in Store

Counterexample #3
memory stack next instruction

[0@L,0@L] [] Push 0@L

[0@L,0@L] [0@L] Push {0/1}@H

[0@L,0@L] [{0/1}@H,0@L] Store

[{0@H/0@L},{0@L/0@H}] [] Halt

11

stack before side condition stack after memory

a@X : n@Y : stk X ≤ labOf(mem[a]) stk mem[a] := n@X⨆Y

Fixing 3nd bug in Store

No sensitive upgrade [Steve Zdancewic’s PhD, 2002]

Counterexample #4
memory stack next instruction

[0@L] [] Push 0@L

[0@L] [0@L] Push {0/1}@H

[0@L] [{0/1}@H,0@L] Add

[0@L] [{0/1}@L] Push 0@L

[0@L] [0@L,{0/1}@L] Store

[{0/1}@L] [] Halt

12

Fixing bug in Add
instruction stack before stack after memory

Add n@X : m@Y :stk (n+m)@(X⨆Y) : stk

Counterexample #5
memory stack next instruction

[0@L,0@L] [] Push 1@L

[0@L,0@L] [1@L] Push 0@L

[0@L,0@L] [0@L,1@L] Store

[1@L,0@L] [] Push {1/0}@H

[1@L,0@L] [{1/0}@H] Load

[1@L,0@L] [{0/1}@L] Push 0@L

[1@L,0@L] [0@L,{0/1}@L] Store

[{0/1}@L,0@L] [] Halt

13

Fixing bug in Load
instruction stack before stack after memory

Load a@X : stk mem[a]@X : stk

How did we do this?

• QuickCheck: random testing tool for Haskell

• Property ~= Boolean Haskell expression
– QC generates random instances for variables

– implications treated specially
• failing preconditions cause test case to be discarded

– Failed tests are shrunk to minimal counterexamples

• Out of the box: complete failure! 
– couldn’t find any bug; astronomic discard rate

14

(Re)phrasing noninterference

Original 
for random i1,
for random i2,
 if i1 ≈ i2
 and i1 →* h1
 and i2 →* h2
 then
 mem(h1) ≈ mem(h2)

Much better 
for random i1,
for random
 ≈ variation i2 of i1,
 if i1 →* h1
 and i2 →* h2
 then
 mem(h1) ≈ mem(h2)

15

Rare

Naive generation

Bug MTTF

1nd for Store 8s

2st for Store ∞*

3rd for Store 47s

Add 83s

Load ∞*

Push 4s
16

• How can we evaluate how good our testing is?

– add bugs one at a time and see how fast they’re found

– Mean Time to Find (MTTF)

*not found in 300s

from
before

new

bad

Some statistics

• discard rate: 79% (not reaching halted states)

• average number of execution steps: 0.47

• reasons for termination

17

0%

10%

20%

30%

40%

50%

60%

70%

80%

stack underflow halt load or store out
of range

Weighted distribution on instructions

• increased chance of getting Push or Halt

• average number of execution steps: 2.69

• reasons for termination

18

0%
5%

10%
15%
20%
25%
30%
35%
40%

halt stack underflow load or store out of
range

Instruction sequences

• generating useful instruction sequences more
often (e.g. Push a; Store, where a is valid addr)

• average number of execution steps: 3.86

• reasons for termination

19

0%
5%

10%
15%
20%
25%
30%
35%
40%

halt load or store
out of range

stack
underflow

sensitive
upgrade

Smart integers

• generating valid code and data addr. more often
– varying valid addr with high probability to other addr

• average number of execution steps: 4.22

• reasons for termination

20

0%

10%

20%

30%

40%

50%

halt stack
underflow

load or store
out of range

sensitive
upgrade

They don’t just run longer ...

• Smarter generation finds bugs much faster

• Mean Time to Find (MTTF)

21

Bug Naive Smarter

1st for Store 7660.07ms 0.31ms

2nd for Store ∞ 32227.10ms

3rd for Store 47365.97ms 0.12ms

Add 83247.01ms 30.05ms

Load ∞ 2258.93ms

Push 3552.54ms 0.07ms

Generation by execution

22

• try to generate instruction seq that doesn’t crash

• maintain a current state
– generate instr(s) that make sense in current state

– run instr(s) to obtain new current state

– fully precise for straight-line code

• jumps forward easy, jumps backward harder
– look ahead 2 steps before committing to jump

– current state still not always accurate

• give Halt more weight as execution gets longer

Statistics for generation by execution

23

• average number of execution steps:

• 11.6 for original program, 11.26 for variation

• reasons for termination (original + variation)

0%

20%

40%

60%

80%

100%

halt + halt halt + load or store
out of range

halt + sensitive
upgrade

Generation by execution finds bugs faster

24

Bug Naive Smarter By Exec

1st for Store 7660.07ms 0.31ms 0.02ms

2nd for Store ∞ 32227.10ms 1233.51ms

3rd for Store 47365.97ms 0.12ms 0.25ms

Add 83247.01ms 30.05ms 0.87ms

Load ∞ 2258.93ms 4.03ms

Push 3552.54ms 0.07ms 0.01ms

Arith. mean ∞ 5752.76ms 206.45ms

Geom. mean ∞ 13.33ms 0.77ms

tests / second 24129 7915 3284

discard rate 79% 59% 4%

28x

17x

Adding control flow

• jumps & procedures

– New program counter taken from the stack

• 14 bugs = 6 old bugs + 8 new bugs

• GenByExec

– finds 13 of them in 0.22ms to 69s

– misses one completely 

25

Improving the property

Counterexample to Load bug

memory stack next instruction

[0@L,0@L] [] Push 1@L

[0@L,0@L] [1@L] Push 0@L

[0@L,0@L] [0@L,1@L] Store

[1@L,0@L] [] Push {1/0}@H

[1@L,0@L] [{1/0}@H] Load

[1@L,0@L] [{0/1}@L] Push 0@L

[1@L,0@L] [0@L,{0/1}@L] Store

[{0/1}@L,0@L] [] Halt

27

setting up

observing

bug

takes 155ms to find now; 433 tests (average)

Stronger noninterference

Current 
for random i1,
for random
 ≈ variation i2 of i1,
 if i1 →* h1
 and i2 →* h2
 then
 mem(h1) ≈ mem(h2)

Better 
for random q1,
for random
 ≈ variation q2 of q1,
 if q1 →* h1
 and q2 →* h2
 then
 h1 ≈ h2

28

q - quasi initial = arbitrary, but labOf(pc)≠H
 (control not affected by secrets) ≈ equates all H states

Counterexamples to Load bug

29

memory stack next instruction

[0@L,1@L] [] Push {0/1}@H

[0@L,1@L] [{0/1}@H] Load

[0@L,1@L] [{0/1}@L] Halt

used to take 155ms to find; 433 tests
 now it takes 6ms to find; 12 tests (average)

memory stack next instruction

[0@L,1@L] [{1/0}@H] Load

[0@L,1@L] [{1/0}@L] Halt

This finds all bugs, including ...

30

it takes 16s to find this one (average)

memory stack next
instruction

[] [ARet (3,False)@L,0@L,ARet (4,True)@L] Push {3/2}@H

[] [{3/2}@H,ARet (3,False)@L,0@L,ARet (4,True)@L] Jump

execution 1 continues ...

[] [ARet (3,False)@L,0@L,ARet (4,True)@L] Return

[] [0@L,ARet (4,True)@L] Return

[] [0@L] Halt

execution 2 continues ...

[] [ARet (3,False)@L,0@L,ARet (4,True)@L] Pop

[] [0@L,ARet (4,True)@L] Return

[] [0@H] Halt

Surprises

• Jump cannot return the PC from high to low
– Can only be achieved by call/return

• High return addresses cannot ≈ high integers
– They can be distinguished by Return!

• The number of return values must be specified
at a call
– Or else a secret can be leaked by choosing

different Return instructions

Even stronger noninterference

EENI

LLNI

SSNI

what we actually want

what’s
easier
to test

what we can prove
by induction
(“unwinding conditions”)

32

Single-step noninterference (SSNI)

L

Lhalt

*

easiest to test and suitable for proof (“unwinding conditions”)

L

L

*

*

H

H

L

L

H

H

H

SSNI finds each bug in under 17ms

34

EENI (with all
improvements)

SSNI

Arith. mean MTTF 1526.75ms 2.01ms

Geom. mean MTTF 46.48ms 0.47ms

tests/s 2391 18407

discard rate 69% 9%

Tradeoff:
SSNI requires discovering stronger invariants
invariants of real SAFE machine are very complicated

Why shrink counterexamples?
memory stack next instruction

[0@L,0@L] [] Push {0/15}@H

[0@L,0@L] [{0/15}@H] Load

[0@L,0@L] [0@L] Pop

[0@L,0@L] [] Push -5@L

[0@L,0@L] [-5@L] Push 17@L

[0@L,0@L] [17@L,-5@L] Push 0@L

[0@L,0@L] [0@L,17@L,-5@L] Store

[17@L,0@L] [-5@L] Push 1@L

[17@L,0@L] [1@L,-5@L] Store

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [] Push {21/3}@H

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{21/3}@H] Push 2@L

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [2@L,{21/3}@H] Load

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [0@L,{21/3}@H] Pop

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{21/3}@H] Push 1{/0}@H

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [1{/0}@H,{21/3}@H] Push 8@L

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [8@L,1{/0}@H,{21/3}@H] Store

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{21/3}@H] Push {9/17}@H

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{9/17}@H,{21/3}@H] Push {3/0}@H

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{3/0}@H,{9/17}@H,{21/3}@H] Load

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{0/17}@L,{9/17}@H,{21/3}@H] Store

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [{21/3}@H] Push 3@L

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [3@L,{21/3}@H] Push 1@H

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [1@H,3@L,{21/3}@H] Load

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [-5@L,3@L,{21/3}@H] Pop

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [3@L,{21/3}@H] Push 1@L

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [1@L,3@L,{21/3}@H] Push 19@L

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [19@L,1@L,3@L,{21/3}@H] Halt

35

Shrinking

• Greedy search for smaller counterexample

• Default QuickCheck shrinking, + we specify
“shrinking candidates”

– Lots of tricks to shrink fast and effectively

• Reported counterexamples are almost always
minimal

36

Summary

• With careful generation, a well-formulated
property, and good shrinking…

 we CAN find minimal counterexamples to
non-interference fast and reliably

• …in a toy (but interesting) situation

– Now applying the same techniques in anger to the
real CRASH/SAFE abstract machine

