
3/10/13	
  

1	
  

The need for Capability Policies���
 ���

- position paper -	



Sophia Drossopoulou & James Noble���
WG2.16, 13 May 2013 ���

	



A very powerful program	



  Stolen shamelessly from David Wagner, http://www.cs.berkeley.edu/~daw/talks/PLAS06.ps	


2 

Capabilities	



3 

Object Capabilities	



  Unforgeable capabilities	


  Possession implies Right	


  No other access control checking 	



  Principle of Least Authority	


  No Ambient Authority	



  Capabilities + Pure Object-Orientation = Object-Capabilities	


	

 5 

Object Capabilities	



6  Metric space: d(x,y) = Dijkstra(x,y)	



Object Capabilities	



7  Metric space: d(x,y) = Dijkstra(x,y)	





3/10/13	
  

2	
  

Object Capabilities and JavaScript	



  Object Capabilities make secure JavaScript etc possible	



  But:	



 Code is low level,	



 Code does not explicitly express the capability policy,	



 Security concerns are tangled with functionality concerns,	



 Code more about mechanism (how) than the policy (what).	


8 

Capability Policies – Our Position	



  What are Capability Policies?���
	



  Are Capability Policies Novel?���
	



  Can we reason about Capability Policies?���
	



9 

What are Capability Policies?���
The mint example ���
	

We consider the electronic money as proposed in [MillerEtAl,FinCrypto’00]	


  Mints with electronic money,	


  Purses held within mints, 	


  Transfers of funds between purses,  	


  The currency of a mint is the sum of balances of its purses.	



10 

Mint example – the objects	



aMint 

aPurse_1 
balance: 5 

aPurse_2 
balance: 15 

 

aPurse_3 
balance: 8 

 

aPurse_4 
balance:50 

aMint’ 

aMint.currency =  5 +15 + 8 
11 

What are Capability Policies?���
The mint example ���
	

We consider the electronic money as proposed in [MillerEtAl,FinCrypto’00]	


  Mints with electronic money,	


  Purses held within mints, 	


  Transfers of funds between purses,  	


  The currency of a mint is the sum of balances of its purses.	


 	



Purses trust the mint to which they belong. Programs using the money system 
trust their purses (and thus the mint). Users trust the money system, but  do not  
trust each other.   	


 	



There is also an implicit assumption that no purses are destroyed.	


12 

Mint example – Java code	


public final class Mint {      }    

public final class Purse { 

private final Mint mint;  private long balance; 

 public Purse(Mint mint, long balance) { 
   if (balance<0) { throw …  }; 
    this.mint = mint; this.balance = balance; } 

 public Purse(Purse prs) { 
   mint = prs.mint;  balance = 0; } 

 public void deposit(Purse prs, long amnt) { 
   if ( mint!=prs.mint || amnt>prs.balance 

                            || amnt+balance<0 ) 
            { throw …   }; 
    prs.balance -= amnt;  balance += amnt; } 

}	


13 



3/10/13	
  

3	
  

Capability Policies – the mint 
example	


The policy, as in [MillerEtAl,FinCrypto’00]	


 	



  Pol_1 	

With two purses of the same mint, one can transfer money 
between them.	



  Pol_2 	

Only someone with the mint of a given currency can violate 
conservation of that currency.	



  Pol_3   The mint can only inflate its own currency.	


  Pol_4 	

No one can affect the balance of a purse they don't have.	


  Pol_5 	

Balances are always non-negative integers.	


  Pol_6 	

A reported successful deposit can be trusted as much as one 

trusts the purse one is depositing into.	


14 

The code: policy scattered and tangled	


public final class Mint {      }    

public final class Purse { 

private final Mint mint;  private long balance; 

 public Purse(Mint mint, long balance) { 
   if (balance<0) { throw …  }; 
    this.mint = mint; this.balance = balance; } 

 public Purse(Purse prs) { 
   mint = prs.mint;  balance = 0; } 

 public void deposit(Purse prs, long amnt) { 
   if ( mint!=prs.mint || amnt>prs.balance || amnt+balance<0 ) 

                             { throw …   }; 
    prs.balance -= amnt;  balance += amnt; } 

} 

  Pol_2  Only someone with the mint of a given currency can violate conservation of 
that currency. 

 

15 

���
���
���
	



We believe that such policies should be 
explicitly and formally stated, and adherence of 

the code should be formally verified.	



16 

Capability Policies – Our Position	



  What are Capability Policies?���
 	



  Are Capability Policies Novel?���
Formal specification of capability policies poses new questions for 
specification languages.���
	



  Can we reason about Capability Policies?���
 	



17 

Capability Policies	



  Program centered  They talk about properties of programs rather than 
protocols.	



  Fine-grained  They talk about individual objects, rather than modules/
groups of objects.	



  Open They must be satisfied by any use of the code extended in any 
possible manner (closed requirements need only be satisfied by the code 
itself).	



  Rely elements 	

Execution in a state satisfying some condition will lead to 
new state satisfying new condition.	



  Deny elements 	

If we reach a certain state/modify some property, then 
some other event will happen/will have happened.	



18 

Capability Policies are Program Centered	


They talk about individual objects, rather than modules/groups of objects.	


  Pol_1	

With two purses of the same mint, ���

one can transfer money between them.	


  Pol_2  Only someone with the mint of a given currency ���

can violate conservation of that currency.	


  Pol_3	

  The mint can only inflate its own currency.	


  Pol_4	

  No one can affect the balance of a purse they don't have.	


  Pol_5	

  Balances are always non-negative integers.	


  Pol_6	

  A reported successful deposit���

 can be trusted as much as one trusts the purse one is depositing into.	


	


As opposed to coarse-grained security concerns which restrict control/information flow between 
components, eg the mint cannot affect the inventory. 	


	


	



19 



3/10/13	
  

4	
  

Capability Policies are Fine-Grained	


They talk about individual objects, rather than modules/groups of objects.	


  Pol_1	

With two purses of the same mint, ���

one can transfer money between them.	


  Pol_2  Only someone with the mint of a given currency ���

can violate conservation of that currency.	


  Pol_3	

  The mint can only inflate its own currency.	


  Pol_4	

  No one can affect the balance of a purse they don't have.	


  Pol_5	

  Balances are always non-negative integers.	


  Pol_6	

  A reported successful deposit���

 can be trusted as much as one trusts the purse one is depositing into.	


	


Note that a mint’s currency is an indirect property of program state, and may depend  on several objects, not 
necessarily reachable from the mint object. ���
Protocols typically talk about calls to the API, but not about indirect properties.	


	


	


	



20 

Capability Policies are Open	


	


  Must be satisfied by any extensions of the code extended���
	

 (closed requirements need only be satisfied by the code itself)	



	


 Subclassing, 	


 Mashups,	


 Dynamic loading etc, 	



	


   Program verification is usually closed, ���
	

 	

while web security is open.	



21 

Capability Policies have Rely & Deny Elements	



Rely elements 	

Execution in a state satisfying some condition ���
will lead to new state satisfying new condition.	


Deny elements 	

If we reach a certain state/modify some property, then 
some other event will happen/will have happened.���
	


  Pol_1 	

With two purses of the same mint, one can transfer money 

between them.���
	

 	

 	

 	

 	

Rely: can transfer ;   Deny: … of same mint	



  Pol_2 	

 Only someone with the mint of a given currency can violate 
conservation of that currency.���
	

 	

 	

 	

 	

Deny: … only someone of same mint	



  Pol_3 	

The mint can only inflate its own currency.���
	

 	

 	

 	

 	

Deny: … only inflate	



	


	



22 

Capability Policies have Rely & Deny Elements	



Rely elements 	

Execution in a state satisfying some condition ���
will lead to new state satisfying new condition.	


Deny elements 	

If we reach a certain state/modify some property,���
then some other event will happen/will have happened.���
	


  Pol_4 	

No one can affect the balance of a purse they don't have.���
	

 	

 	

 	

 	

Deny: … if affect, they must have the purse	



  Pol_5 	

Balances are always non-negative integers.���
 	

 	

 	

 	

 	

Deny: … balance never negative – like 2 state invariant	



  Pol_6 	

A reported successful deposit can be trusted as much as one trusts the 
purse one is depositing into.���
	

 	

 	

 	

 	

??? 	



 ���
	



23 

Rely vs Deny	



Rely 	

Execution in a state satisfying some condition ���
will lead to new state satisfying new condition.���
	

 	

describe sufficient conditions.	



	


Deny 	

If we reach a certain state/modify some property, then some other event 
will happen/will have happened.���
	

 	

describe necessary conditions.	



	


Deny specifications related to, but different from, deny in deny guarantee, 
correspondence assertions and refinement types.	



24 

Capability Policies – Our Goals	



  What are Capability Policies?���
Capability policies express the security concerns of a program (what).���
	



  Are Capability Policies Novel?���
Formal specification of capability policies poses new questions for 
specification languages.���
	



  Can we reason about Capability Policies?���
Reasoning that code adheres to capability policies needs to make use of 
programming languages’ “restrictive” features (type, privacy, ownership 
etc).	



25 



3/10/13	
  

5	
  

Rely Elements Reasoning not surprising.	



Pol_1 	

With two purses of the same mint, one can transfer money between 
them.	


 	


Requires a proof that���
 	

 	

prs1.deposit(prs2,amt) 
transfers amt from prs1 to prs2 (Hoare Logic)	



26 

Deny Elements Reasoning combines disciplines.	


Pol_2 	

Only someone with the mint of a given currency can violate conservation 
of that currency.	


 	



Reasoning about this property combines Hoare-Logic style reasoning, with 
footprint analysis, and reliance on restrictive features:	



  Analysis of the “footprint” of currency, i.e. which objects’ state may affect the 
currency of a mint,	



  Use of privacy/finality annotations to deduce which methods may affect the 
footprint (restrictive language features),	



  Analysis of the effect of these methods (Hoare Logic).	



27 

Deny Elements Reasoning combines disciplines.	


public final class Mint {      }    

public final class Purse { 
private final Mint mint;  private long balance; 
 public Purse(Mint mint, long balance) { 
   if (balance<0) { throw …  }; 
    this.mint = mint; this.balance = balance; } 
 public Purse(Purse prs) { 
   mint = prs.mint;  balance = 0; } 
 public void deposit(Purse prs, long amnt) { 
   if ( mint!=prs.mint || amnt>prs.balance || amnt+balance<0 ){throw …}; 

    prs.balance -= amnt;  balance += amnt; } 
} 

  Footprint(aMint.currency()) = { p:Purse | p.mint==aMint }.balance  
 

30 

Deny Elements Reasoning combines disciplines.	


public final class Mint {      }    

public final class Purse { 
private final Mint mint;  private long balance; 
 public Purse(Mint mint, long balance) { 
   if (balance<0) { throw …  }; 
    this.mint = mint; this.balance = balance; } 
 public Purse(Purse prs) { 
   mint = prs.mint;  balance = 0; } 
 public void deposit(Purse prs, long amnt) { 
   if ( mint!=prs.mint || amnt>prs.balance || amnt+balance<0 ){throw …}; 

    prs.balance -= amnt;  balance += amnt; } 
} 

  Footprint(aMint.currency()) = { p:Purse | p.mint==aMint }.balance  
  privacy/finality annotations:    	



  Class Purse is final, and field mint is final.	


  Therefore mint can only be set through constructors Purse(Purse) and Purse(Mint,long).	


  Therefore { p:Purse | p.mint==aMint } is only affected by these constructors.	


  Field balance is private. 	


  Therefore Footprint(aMint.currency()) only affected by ���

methods deposit(Purse,long) and ���
constructors  Purse(Purse) and Purse(Mint,long). 

 

31 

Deny Elements Reasoning combines disciplines.	


public final class Mint {      }    

public final class Purse { 
private final Mint mint;  private long balance; 
 public Purse(Mint mint, long balance) { 
   if (balance<0) { throw …  }; 
    this.mint = mint; this.balance = balance; } 
 public Purse(Purse prs) { 
   mint = prs.mint;  balance = 0; } 
 public void deposit(Purse prs, long amnt) { 
   if ( mint!=prs.mint || amnt>prs.balance || amnt+balance<0 ){throw …}; 

    prs.balance -= amnt;  balance += amnt; } 
} 

  Footprint(aMint.currency()) only affected by method deposit(Purse,long) and constructors  
Purse(Purse) and Purse(Mint,long). 

  Analysis of the effect of these methods/constructors (Hoare Logic):    	



  the constructor Purse(Purse,long) does not affect the currency.	



  the constructor Purse(Mint,long) affects the currency.	



  the  method deposit(Purse,long) does not affect the currency.	



  Therefore, affect aMint.currency() only though calling Purse(aMint,amt),���
 and thus only when holding aMint.	



 

32 

Open Policies need more language features	


public final class Mint {      }    

public       class Purse { 
private final Mint mint;  private long balance; 
 public Purse(Mint mint, long balance) { 
   if (balance<0) { throw …  }; 
    this.mint = mint; this.balance = balance; } 
 public Purse(Purse prs) { 
   mint = prs.mint;  balance = 0; } 
 public void deposit(Purse prs, long amnt) { 
   if ( mint!=prs.mint || amnt>prs.balance || amnt+balance<0 ){throw …}; 

    prs.balance -= amnt;  balance += amnt; } 
} 

  Assume that class Purse is not a final.	



  Then, to satisfy Pol_2 in an open setting, you need to ensure that subclasses will not give access to fields mint or 
balance.	



  This means that fields mint and balance should be owned.	


  Similar patterns arise in other setting, cf. membranes.   	


 33 



3/10/13	
  

6	
  

Deny Elements can also be achieved 
through “hand-coded” restrictions 	


def makeMint(name) : any { 
 def [ sealer, unsealer ] := makeBrandPair(name) 
 def mint { 
  to makePurse( var balance:( int >= 0) ) : any { 
   def decr( amount:(0..balance) ) : void  
      { balance −= amount  } 
   def purse { 
    to sprout( ) : any { return mint.makePurse (0) } 
    to getDecr( ) : any { return sealer.seal ( decr ) } 
    to deposit(amount : int, src) :void { 
     unsealer.unseal(src.getDecr()) ( amount ) 
     balance += amount 
    } 
   } 
  return purse 
  } 
 } 
 return mint 

} 

 

34 

Deny Elements can also be achieved 
through better language features	


class Mint.new(name : String) { 
 
   class Purse.new (balance’ : Number) is owned { 
     var balance: Number is confidential := balance’ 
   } // owners as readers 
 
   method newPurse(amount : Number) -> Purse { 
     return Purse.new(amount)}  
 
   method deposit(from : Purse, to : Purse, amount : Natural) -> Done {  
     if ((amount > 0) && {(from.balance – amount) >= 0)} 
        then { 
      from.balance := from.balance – amount 

          to.balance := to.balance + amount 
        } else { Exception.raise("Fraud detected") }  
   } 
} 

35 

Deny Elements can also be achieved 
through better language features	


class Mint.new(name : String) { 
 
  method newPurse(amount : Number) ownedby(o) -> Purse { 
     return object is owned(self &&& o) { var balance := amount }   
  } // owners as readers or owners as modifiers 
 
  method balance(p : Purse) { p.balance } 
 
  method deposit(from : Purse, to : Purse, amount : Natural) -> Done {  
     if ((amount > 0) && {(from.balance – amount) >= 0)} 
        then { 
      from.balance := from.balance – amount 

          to.balance := to.balance + amount 
        } else { Exception.raise("Fraud detected") }  
   } 
} 

36 

Deny Elements can also be achieved 
through better language features	


class Mint.new(name : String) { 
   def ledger = WeakMap.new<Purse,Number> owned(self) 
 
   method newPurse(amount : Number) -> Purse { 
     def p = object { var _ }   
     ledger[p] = amount 
     return p 
   } 
 
   type Purse = Object  
 
   method deposit(from : Purse, to : Purse, amount : Natural) -> Done {  
     if ((amount > 0) && ((ledger[from] – amount) >= 0)  
           && (ledger.contains(to))) 
        then { 
      ledger[from] := ledger[from] – amount 

          ledger[to] := ledger[to] + amount 
        }  
   } 
} 

37 

Further Work 	



  Design a specification language for Capability Policies – temporal logic?	


  Investigate what trust means (Pol_6).	


  Investigate “Restrictive Programming Language Features” to support Capability Policies.	


  Develop Mixed Logics to Reason about Programs’ adherence to Capability Policies.	


 

 

38 


