
2nd Belgian-Dutch workshop on
Software Evolution

BENEVOL 2004

8-9 July 2004
University of Antwerp

Belgium



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 2

Problem statement

• More and better tool support needed for software
evolution

– traceability management
– version control (e.g., software merging)
– impact analysis
– change propagation
– consistency maintenance
– model transformation
– co-evolution
– analysing release histories
– a "theory of software evolution"

• Formalisms can be helpful for some of these tools



Critical pair analysis
of graph transformations

for software refactoring

Tom Mens
Service de Génie Logiciel

Université de Mons Hainaut
http://www.umh.ac.be/~genlog



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 4

Case study: Graph transformation

• Formalism based on
– graphs: to represent software entities
– graph transformation: to represent software evolution
– offers many theoretical results that can help during analysis

• type graph, negative application conditions, parallel and
sequential (in)dependence, confluence, critical pair analysis

• Experiment: use graph transformation theory to
detect and resolve structural conflicts when
refactorings are applied in parallel

– Use AGG tool for experiments
– in collaboration with Gabi Taentzer, Berlin



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 5

Case study: Graph transformation

• Two concrete scenarios



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 6

Case study: AGG



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 7

Case study: critical pair analysis

• Use critical pair analysis in AGG
– T1 and T2 form a critical pair if

• they can both be applied to the same initial graph G but
• applying T1 prohibits application of T2 and/or vice versa

G H1

H2

T1

T2

X

T2

X
T1



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 8

Case study: parallel refactorings

• Compute critical pairs for 9 representative
refactorings



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 9

Case study: parallel refactoings

• Perform confluence analysis to resolve detected
conflicts



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 10

Case study: parallel refactoings

• To do
– Improve performance of critical pair analysis algorithm
– Find out to which extent conflict resolution can be

automated
– Reduce set of critical pairs

• e.g. by taking into account transitive closure of inheritance

– Investigate distinction between symmetric and asymmetric
conflicts



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 11

Case study: framework customisation

• Customisation conflicts due to framework
refactoring



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 12

Case study: framework customisation

• Customisation conflicts due to framework
refactoring



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 13

Case study: Open question

• How to deal with semantic conflicts?



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 14

Case study: another potential scenario

• Use some tool to detect "bad smells"
– opportunities for refactoring
– can be used to propose a list of possible

refactorings that can be applied in the same
context

• cf. Mens&Tourwé, CSMR 2003 and IWPSE 2003
• Critical pair analysis can be used to

– identify which of the refactorings in this list are in
conflict

– suggest a non-conflicting sequence of refactorings
that removes the detected bad smells



Software Engineering Lab
University of Mons-Hainaut

http://www.umh.ac.be/~genlog

Formal foundations for
software evolution

Tom Mens



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 16

Example: Refactoring formalisms

• Question
– which formalisms can be used to improve tool

support for refactoring?
• Answers

– Graph transformation
– Logic formalisms

• description logic, fuzzy logic, temporal logic, ...
– Software metrics
– Formal concept analysis
– Program slicing
– Denotational semantics



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 17

Fundamental Research Questions

• possible uses of graph transformation to assist with
refactoring ?

– How to (de)compose refactorings ?
– How to detect and resolve conflicts due to refactorings ?

• critical pair analysis
– How to deal with co-evolution ?

• triple (quadruple) graph grammars
– How to guarantee "behaviour preserving" ?
– How to guarantee "structure improving" ?



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 18

Fundamental Research Questions

• other formalisms to assist with refactoring?
– formal concept analysis
– program slicing
– description logics
– ...

• What is behaviour ? Behaviour preserving ?
– real-time systems (time); embedded systems (power & memory);

safety critical systems (liveness, …)
– What are good program invariants ? How to express them ?

• What is structure ? Structure improving ?
– How to measure impact/effect of refactoring on software quality ?

• Co-evolution
– How to address consistency maintenance and change propagation ?

• code ⇔ design ⇔ architecture ⇔ requirements
– How to refactor at higher abstraction levels ?

• UML models, design patterns, architectures, components



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 19

Practical Questions

• How to measure complexity of refactorings ?
– Comparing different refactorings in same formalism
– Comparing same refactoring in different formalisms

– computational complexity of preconditions
– computational complexity of applying the refactoring
– readability/understandability of the refactoring

• How can we determine where and why to refactor ?
– bad smells

• Where does refactoring fit in the development
process ?

• How to combine refactoring with other techniques ?
– design patterns, application frameworks, aspect-oriented

programming, generative programming, …



© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 20

Opportunities for collaboration

• Applying refactorings to UML models
– Fits in the MDA model transformation context
– Addresses theoretical and practical aspects

• Theoretical
– deciding on an appropriate formalism ; subset of UML ;

definition of behaviour
• Practical

– developing tools / plug-ins for model refactoring

• Opportunities
– Suggest as a topic for ERCIM Strategy 2004
– Propose a small-scale European project (possible with support

from ERCIM)
• academic partners: UA, UMH, CWI, ... ?
• industrial partners ?


