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Problem statement

• More and better tool support needed for software
evolution

– traceability management
– version control (e.g., software merging)
– impact analysis
– change propagation
– consistency maintenance
– model transformation
– co-evolution
– analysing release histories
– a "theory of software evolution"

• Formalisms can be helpful for some of these tools
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Case study: Graph transformation

• Formalism based on
– graphs: to represent software entities
– graph transformation: to represent software evolution
– offers many theoretical results that can help during analysis

• type graph, negative application conditions, parallel and
sequential (in)dependence, confluence, critical pair analysis

• Experiment: use graph transformation theory to
detect and resolve structural conflicts when
refactorings are applied in parallel

– Use AGG tool for experiments
– in collaboration with Gabi Taentzer, Berlin
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Case study: Graph transformation

• Two concrete scenarios
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Case study: AGG
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Case study: critical pair analysis

• Use critical pair analysis in AGG
– T1 and T2 form a critical pair if

• they can both be applied to the same initial graph G but
• applying T1 prohibits application of T2 and/or vice versa
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Case study: parallel refactorings

• Compute critical pairs for 9 representative
refactorings
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Case study: parallel refactoings

• Perform confluence analysis to resolve detected
conflicts
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Case study: parallel refactoings

• To do
– Improve performance of critical pair analysis algorithm
– Find out to which extent conflict resolution can be

automated
– Reduce set of critical pairs

• e.g. by taking into account transitive closure of inheritance

– Investigate distinction between symmetric and asymmetric
conflicts
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Case study: framework customisation

• Customisation conflicts due to framework
refactoring
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Case study: framework customisation

• Customisation conflicts due to framework
refactoring
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Case study: Open question

• How to deal with semantic conflicts?
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Case study: another potential scenario

• Use some tool to detect "bad smells"
– opportunities for refactoring
– can be used to propose a list of possible

refactorings that can be applied in the same
context

• cf. Mens&Tourwé, CSMR 2003 and IWPSE 2003
• Critical pair analysis can be used to

– identify which of the refactorings in this list are in
conflict

– suggest a non-conflicting sequence of refactorings
that removes the detected bad smells
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Example: Refactoring formalisms

• Question
– which formalisms can be used to improve tool

support for refactoring?
• Answers

– Graph transformation
– Logic formalisms

• description logic, fuzzy logic, temporal logic, ...
– Software metrics
– Formal concept analysis
– Program slicing
– Denotational semantics
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Fundamental Research Questions

• possible uses of graph transformation to assist with
refactoring ?

– How to (de)compose refactorings ?
– How to detect and resolve conflicts due to refactorings ?

• critical pair analysis
– How to deal with co-evolution ?

• triple (quadruple) graph grammars
– How to guarantee "behaviour preserving" ?
– How to guarantee "structure improving" ?
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Fundamental Research Questions

• other formalisms to assist with refactoring?
– formal concept analysis
– program slicing
– description logics
– ...

• What is behaviour ? Behaviour preserving ?
– real-time systems (time); embedded systems (power & memory);

safety critical systems (liveness, …)
– What are good program invariants ? How to express them ?

• What is structure ? Structure improving ?
– How to measure impact/effect of refactoring on software quality ?

• Co-evolution
– How to address consistency maintenance and change propagation ?

• code ⇔ design ⇔ architecture ⇔ requirements
– How to refactor at higher abstraction levels ?

• UML models, design patterns, architectures, components
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Practical Questions

• How to measure complexity of refactorings ?
– Comparing different refactorings in same formalism
– Comparing same refactoring in different formalisms

– computational complexity of preconditions
– computational complexity of applying the refactoring
– readability/understandability of the refactoring

• How can we determine where and why to refactor ?
– bad smells

• Where does refactoring fit in the development
process ?

• How to combine refactoring with other techniques ?
– design patterns, application frameworks, aspect-oriented

programming, generative programming, …
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Opportunities for collaboration

• Applying refactorings to UML models
– Fits in the MDA model transformation context
– Addresses theoretical and practical aspects

• Theoretical
– deciding on an appropriate formalism ; subset of UML ;

definition of behaviour
• Practical

– developing tools / plug-ins for model refactoring

• Opportunities
– Suggest as a topic for ERCIM Strategy 2004
– Propose a small-scale European project (possible with support

from ERCIM)
• academic partners: UA, UMH, CWI, ... ?
• industrial partners ?


