
Peter Ebraert

Programming Technology Lab
Faculty of Sciences - Vrije Universiteit Brussel

A Reflective Approach to
Dynamic Software Evolution

2Peter Ebraert - Vrije Universiteit Brussel / 10

Problem Statement
Towards Separated Concerns
Towards Dynamic Software Evolution
Conclusion
Issues

Overview

3Peter Ebraert - Vrije Universiteit Brussel / 10

Software Evolution is Unavoidable
Critical Systems

Systems that “cannot” be shut down
Web services, Telecommunication switches, Banking Systems,
Airport Traffic control systems, GPS satellite update...

Problem Statement

What if a small part of those systems has to
evolve?

4Peter Ebraert - Vrije Universiteit Brussel / 10

Every concern implemented as a separate
entity.

Function, ADT, class, component, aspect, ...

Advantages
No scattered code
Every entity can evolve separately
Easier to maintain

Towards Separated Concerns

return TomTourwé.doResearch(loadsOfMoney);

5Peter Ebraert - Vrije Universiteit Brussel / 10

Divide and conquer!
Allowing every entity to evolve separately
System evolution -> Entity evolution

Entity addition
Entity removal
Entity modification

Dynamic comes in when this is done at
runtime

Towards Dynamic SW Evolution
Goal

6Peter Ebraert - Vrije Universiteit Brussel / 10

Able to reason about itself
2 levels of calculation: base level, metalevel
Causal connection between the 2 levels

Base level application has access to its metalevel
representation on the base level
A change of the metalevel representation impacts the base
level application.

Towards Dynamic SW Evolution
Reflective Systems

7Peter Ebraert - Vrije Universiteit Brussel / 10

Two layered architecture
Base level: instrumented application
Metalevel: monitor

Gets control on every inter-entity communication
Propagates control to the adequate base-level entity

Towards Dynamic SW Evolution
The Framework

8Peter Ebraert - Vrije Universiteit Brussel / 10

Allows runtime interaction with the system
Modification of the base-level applications representation

API functions on the Monitor
Adding an entity
Removing an entity
Modifying an entity

Deactivate the entity -> Queue all messages to it
Transfer the state -> Programmers decision
Activate the entity -> Execute all queued messages

Towards Dynamic SW Evolution
The Runtime API

9Peter Ebraert - Vrije Universiteit Brussel / 10

Two-step solution for dynamic evolution
1. Make the system well modularized
2. Control the instrumented base application by a metalevel

monitor
-> Use reflective programming capabilities

Works for a lot of programming styles
Object-oriented, aspect-oriented or any other, as long as it is
well modularized.

Conclusion

10Peter Ebraert - Vrije Universiteit Brussel / 10

Issues

Issues

References
Peter Ebraert and Tom Tourwé
A Reflective Approach to Dynamic Software Evolution
In the proceedings of the Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE'04) in conjunction
with the European Conference on Object Oriented Programming (ECOOP 2004), 15th of June 2004, Oslo Norwa

Peter Ebraert and Eric Tanter
A Concern-based Approach to Dynamic Software Evolution
 In the Dynamic Aspects Workshop (DAW) proceedings in conjunction with the conference on Aspect Oriented Software Design
(AOSD 2004), March 22-26 2004, Lancaster UK

Existing Instances
State Mapping
Running Threads with D.E.
Aspect Composition

Do we really want D.E.?

Does DAOP allow D.E.?
Does Reflection allow D.E.?

Are there good alternatives?

