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Software Evolution is Unavoidable
Critical Systems

Systems that “cannot” be shut down
Web services, Telecommunication switches, Banking Systems, 
Airport Traffic control systems, GPS satellite update...

Problem Statement

What if a small part of those systems has to 
evolve?
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Every concern implemented as a separate 
entity.

Function, ADT, class, component, aspect, ...

Advantages
No scattered code
Every entity can evolve separately
Easier to maintain

Towards Separated Concerns

return TomTourwé.doResearch(loadsOfMoney);
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Divide and conquer!
Allowing every entity to evolve separately
System evolution -> Entity evolution

Entity addition
Entity removal
Entity modification

Dynamic comes in when this is done at 
runtime

Towards Dynamic SW Evolution
Goal



6Peter Ebraert - Vrije Universiteit Brussel / 10

Able to reason about itself
2 levels of calculation: base level, metalevel
Causal connection between the 2 levels

Base level application has access to its metalevel 
representation on the base level
A change of the metalevel representation impacts the base 
level application. 

Towards Dynamic SW Evolution
Reflective Systems
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Two layered architecture
Base level: instrumented application
Metalevel: monitor

Gets control on every inter-entity communication
Propagates control to the adequate base-level entity

Towards Dynamic SW Evolution
The Framework
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Allows runtime interaction with the system
Modification of the base-level applications representation

API functions on the Monitor
Adding an entity
Removing an entity
Modifying an entity

Deactivate the entity -> Queue all messages to it
Transfer the state -> Programmers decision
Activate the entity -> Execute all queued messages

Towards Dynamic SW Evolution
The Runtime API
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Two-step solution for dynamic evolution
1. Make the system well modularized
2. Control the instrumented base application by a metalevel 

monitor
-> Use reflective programming capabilities

Works for a lot of programming styles
Object-oriented, aspect-oriented or any other, as long as it is 
well modularized. 

Conclusion
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Issues

Issues
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Existing Instances
State Mapping
Running Threads with D.E.
Aspect Composition

Do we really want D.E.?

Does DAOP allow D.E.?
Does Reflection allow D.E.?

Are there good alternatives?


