
Analysing refactorings with
graph transformation theory

Tom Mens

http://w3.umh.ac.be/genlog
Software Engineering Lab

University of Mons-Hainaut
Belgium



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 2

Introduction - Software Evolution

• More and better tool support needed for
software evolution

– At all levels of abstraction (e.g. programs and
models)

– For a variety of different activities



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 3

Introduction - Software Evolution

• Formalisms can be helpful for such evolution
support

– Description logics
• For model inconsistency management

– collaboration with R. Van Der Straeten, VUB
– Graph transformation

• For supporting software refactoring
• Reasoning about preservation properties

– collaboration with D. Janssens and S. Demeyer, UA
• Analysing refactoring dependencies

– collaboration with G. Taentzer and O. Runge, TU Berlin



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 4

Graph transformations

• GT theory theoretical results can help during
analysis of model refactorings

– type graph, negative application conditions, parallel and
sequential (in)dependence, confluence and critical pair
analysis

• GT tools allow us to perform concrete experiments
– AGG (in collaboration with Berlin)

• Current focus
– Analysing dependencies between class diagram refactorings



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 5

Analysing refactoring dependencies

• Concrete Scenario: Suggest refactoring opportunities
– What are the alternatives of a selected refactoring?
– Which other refactorings need to be applied first in order

to make the selected refactoring applicable?
– Which other refactorings are still applicable after applying

the selected refactoring?

• Goal: Automate the detection of
– mutual exclusion relationships between refactorings
– sequential dependencies between refactorings



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 6

Analysing refactoring dependencies

• Example



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 7

Analysing refactoring dependencies

• Refactoring opportunities
T1 Rename Method print in PrintServer to process
T2 Rename Method save in FileServer to process
T3 Create Superclass Server for PrintServer and FileServer
T4 Pull Up Method accept from PrintServer and FileServer to Server



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 8

Analysing refactoring dependencies

• Refactoring opportunities
T5 Move Method accept from PrintServer to Packet
T6 Move Method accept from FileServer to Packet
T7 Encapsulate Variable receiver in Packet
T8 Add Parameter p of type Packet to method print in PrintServer
T9 Add Parameter p of type Packet to method save in FileServer



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 9

Analysing refactoring dependencies

×T9

××T8

←×T7

×××T6

××T5

×××T4

×←×T3
>>←×T2

>>←←×T1
T9T8T7T6T5T4T3T2T1



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 10

Applying graph transformation theory

• Approach: Use critical pair analysis in AGG
– T1 and T2 form a critical pair if

• they can both be applied to the same initial graph G but
• applying T1 prohibits application of T2 and/or vice versa

G H1

H2

T1

T2

X

T2

X
T1



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 11

Applying graph transformation theory

Step 1: Express object-oriented metamodel as
(attributed) type graph



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 12

Interludium

• Type graphs versus metamodels



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 13

Applying graph transformation theory

Step 2: Express refactorings as (typed attributed)
graph transformations



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 14

Applying graph transformation theory

Step 3: Detect critical pairs between refactoring
transformations

– Potential conflicts between refactorings



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 15

Applying graph transformation theory

Step 4: Fine-tune critical pairs in context of concrete input graph



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 16

Applying graph transformation theory



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 17

Applying graph transformation theory

• Step 5: Perform sequential dependency
analysis

To identify dependencies between
refactorings that are applicable



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 18

Conclusion

• Graph transformation theory is a suitable
formalism for understanding software
refactoring

Detecting mutual exclusionCritical pair analysis

Refactoring transformationparameterised graph production
with NACs and context conditions
mechanism

RefactoringGraph Transformation
wf-constraintstype graph, invariants

Detecting sequential dependenciesConfluence analysis

preconditionsnegative application conditions


