

Improving the Reuse
 of

Language Infrastructures

Karl Trygve Kalleberg
University of Bergen

Motivation

• People build language infrastructures all the time
– compilers, language-specific transformation systems,

code analyzers and generators
• Reusing these is surprisingly difficult

– very few compilers/analyzers are open and extensible
– limited plug-in capabilities

• Consequences
– language processing is difficult for most developers
– light-weight, text-based scripts are preferred
– new infrastructures mostly built from scratch
– these systems are frequently brittle and incomplete
– programmable transformation systems seldom used

Language Infrastructure

parser type
analyzer

style
checker

ppc code
generator

ppc
optimizers

interpreter

doc
generator

frontend
backends

editor

x86 code
generator

x86
optimizers

x86
exec

ppc
exec

compilercurrent clients

Language Infrastructure

parser type
analyzer

style
checker

ppc code
generator

ppc
optimizers

interpreter

doc
generator

grammar typing logic
typing rules

style logic
style rules

analysis logic
IRs (SSA, CFG, ..)

frontend
backends

machine format

editor

x86 code
generator

x86
optimizers

x86
exec

ppc
exec

compiler

re
u
s
e

current clients

transformation
system

Us and Them and The Other Guys

• Us = the software transformation community
– rewriting of source code and other software artifacts
– language infrastructure is a means to an end
– obvious reusers of mainstream language infrastructure
– some degree of community interoperability and reuse

• Them = language providers
– providers (and maintainers!) of language infrastructure
– mostly closed solutions; no extensibility
– design goals do not include code rewriting

• The Other Guys = library/framework developers
– potential users of programmable transformation

systems

Why is Reuse so Poor?

• Technical barriers
– not designed for reuse (no documentation, no libraries)
– no de facto standards for interoperability
– poorly compatible implementation languages
– (incompatible licenses)

• Sociological barriers
– lack of awareness
– no project support infrastructure (issue tracker, forums)
– misconception that “parsing is enough”
– “not invented here”-syndrome

Some Suggestions

• Technical
– data integration

• serialize ASTs (UPTR)
• experiment with more general interchange formats

– functional integration
• co-develop sensible compiler rewriting APIs

• Sociological
– promote existing language infrastructures

• place prominently on pt.org
– combat “not invented here syndome” – collaborate!
– point to, and document, success stories
– promote killer feature: adaptable domain-support

Conclusion

• Current status: “Have solution, need problem”
– at least, “have product, want clients”

• Promotion and advocacy is necessary
– examples, documentation, hyperiding

• Open-sourcing improves code reuse
– potentially high maintenance cost

• Complete openness not required
– exposing a stable AST interface is already useful

• Tendency towards opening mainstream compilers
– ECJ DOM, JSR 269 (APT), JSR 199 (compiler API)

