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Motivation

• People build language infrastructures all the time
– compilers, language-specific transformation systems,  

code analyzers and generators
• Reusing these is surprisingly difficult

– very few compilers/analyzers are open and extensible
– limited plug-in capabilities

• Consequences
– language processing is difficult for most developers
– light-weight, text-based scripts are preferred
– new infrastructures mostly built from scratch
– these systems are frequently brittle and incomplete
– programmable transformation systems seldom used
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Us and Them and The Other Guys

• Us = the software transformation community
– rewriting of source code and other software artifacts
– language infrastructure is a means to an end
– obvious reusers of mainstream language infrastructure
– some degree of community interoperability and reuse

• Them = language providers
– providers (and maintainers!) of language infrastructure
– mostly closed solutions; no extensibility
– design goals do not include code rewriting

• The Other Guys = library/framework developers
– potential users of programmable transformation 

systems



  

Why is Reuse so Poor?

• Technical barriers
– not designed for reuse (no documentation, no libraries)
– no de facto standards for interoperability
– poorly compatible implementation languages
– (incompatible licenses)

• Sociological barriers
– lack of awareness
– no project support infrastructure (issue tracker, forums)
– misconception that “parsing is enough”
– “not invented here”-syndrome



  

Some Suggestions

• Technical
– data integration

• serialize ASTs (UPTR)
• experiment with more general interchange formats

– functional integration 
• co-develop sensible compiler rewriting APIs

• Sociological
– promote existing language infrastructures

• place prominently on pt.org
– combat “not invented here syndome”  – collaborate!
– point to, and document, success stories
– promote killer feature: adaptable domain-support



  

Conclusion

• Current status: “Have solution, need problem”
– at least, “have product, want clients”

• Promotion and advocacy is necessary
– examples, documentation, hyperiding

• Open-sourcing improves code reuse
– potentially high maintenance cost

• Complete openness not required
– exposing a stable AST interface is already useful

• Tendency towards opening mainstream compilers
– ECJ DOM, JSR 269 (APT), JSR 199 (compiler API)



  


