
1

Transformation Systems for
DSLs, Architecture Styles, and

Graphical Languages

David Wile

Teknowledge Corp.

Dwile@teknowledge.com

Two Points

¥ There are many approaches that provide (some of)
the benefits of Domain Specific Languages

¥ Each of them is amenable to adaptation of the
various technologies developed for context free
language entry, analysis, and manipulation —
generally, transformation.

Therefore: we should use past research efforts to
guide future development in the DSL arena

2

Supporting the DSL Spectrum

¥ Language tailored to the problem domain
—Focus on its idioms and jargon
—Assume pre-defined infrastructure support
—Thereby avoiding clumsy, overly general

constructs

¥ Expensive to support fully
—Alternative approaches
—Varying degrees of support per approach

Approaches

¥ Abstract syntax
—OO — Java, .NET
—COM / CORBA
—XML

¥ Syntactic
—YACC
—Synthesizer Generator, Popart, SDF

¥ Graphical
—Acme — Ò Architecture StylesÓ
—PowerPoint Briefing Associate (Ontology-based visualization)

¥ Interpreter / Language Extension
—Haskell
—Access
—Excel
—Generic programming

3

Syntax Support Tools
¥ Abstract Syntax — an intermediate representation

capturing the essential concepts of the domain
¥ Ò LanguageÓ Specification — a set of constraints or

templates to restrict designs
¥ Ò ParsingÓ — adherence of a design to the language

specification
¥ Ò Syntax-DirectionÓ — automated aid to

constructing specifications that adhere
¥ Type Checking — imposing uniformly a set of

more global constraints beyond the (generally
local) syntactic constraints

Semantics Support Tools
¥ Semantics Specification Mechanisms and Issues

—Attribute Grammars
—Transformations — within a language
—Translations — between languages
—(Other) Homomorphisms — into algebraically similar

structures
—Establishing transformation validity

¥ Traversal Mechanisms
—Metaprogramming Calculi — programs as data
—Strategies — heuristics for transformation
—Visitor patterns — a calculus for OO representations of

AST transformations

¥ Debugging Aids — errors related to source
specifications and data structures

4

Example of Lost Art
¥ Popart Translation: implicit homomorphism

— H op[a1, a2, É , an] = (H op)[H a1, H a2, É , H an]
— Automatically look for a way to translate the pieces before composing the

whole, via H op.

¥ Translate from, e.g. Java to Lisp
— CF Syntax for each language
— NT types for pattern variables

T-Java-to-Lisp = translator [Java,Lisp]
 rules
 if (!Bool#t) {!!Stmt#thn} => (COND ((!Sexp#t !!Sexp#thn)))
 !ID#I(!!Exp#args) => (!Atom#I !!Sexp#args)
 !Fexp#e(!!Exp#args) => (APPLY !Sexp#e !!Sexp#args)
* * *

Design Support Tools

¥ Re-engineering aids (inverses for each semantics
specification mechanism)

¥ Design recording aids
—Historical Development — keeping track of a design

history
—Pedagogical Development — when can a design history

be replayed?
—Development strategies — what should be tried first, and

why?
—Requirements-based Development — why are things as

they are?

5

Points

¥ Many approaches for providing DS(L)
support

¥ Past experience shows what peripheral tool
support mechanisms can be beneficial

¥ Read relevant literature from before 1990!

