
Software Transformation Systems Workshop October 24, 2004

Software Transformation

2 questions in transformation:

1. what constructs are to be transformed?

2. what are they to be transformed into?

Our Position: Transformations can be made more

expressive and useful when they are informed by semantic

information of the source.

• This can be general-purpose information like a

constructs type

• or domain-specific information like the space required

for unbounded integers in a computational geometry

application.

Semantic Analysis in Software Transformation, Eric Van Wyk & Eric Johnson, University of Minnesota Page 1

Software Transformation Systems Workshop October 24, 2004

Context: Extensible Languages

selects -

Rwrites

?

¾

¾

¾

Programmer

Program with
SQL and CG
constructs

-

Host Language
Specification

???
Extensible

Compiler Tools

?generates

input outputCustomized
Compiler

- Executable
Program

Language
Extensions

Feature
Designers

implements
SQL

implements
CG

implements...

Semantic Analysis in Software Transformation, Eric Van Wyk & Eric Johnson, University of Minnesota Page 2

Software Transformation Systems Workshop October 24, 2004

Attribute Grammars with Forwarding

foreach Cow c in herd do c.milk();

⇒

{ Cow c ;

for (Iterator iter = herd.iterator(); iter.hasnext();)

{ c = (Cow) iter.next(); c.milk(); } }

foreach: 〈St〉 ::= “foreach” 〈Type〉 〈Id〉 “in” 〈E〉 “do” 〈St〉

St.errors = if not Type.implements(Collection) then ...

forwardsTo “ ... specification of above for loop ... ”

Graphically... for-each

¼ ª R j
Id Type Expr Stmt1

-forwards to
block

?
Stmts

¼ j
Dcl for

¼ ª R jSemantic Analysis in Software Transformation, Eric Van Wyk & Eric Johnson Page 3

Software Transformation Systems Workshop October 24, 2004

For example: Computational Geometry

• Algorithms based on primitives that make qualitative

decision: e.g. is “a point x to the left or right of line l”

• Many algorithms are simplified if intermediate values

can have unbounded precision.

• We can statically compute their size in bits.

• unbounded add: 〈E〉 ::= 〈E〉 +u 〈E〉

E0.size = max(E1.size, E2.size) + 1

unbounded var: 〈E〉 ::= 〈Id〉

E.size = 53

• Generate “unrolled loops” that perform these

operations

Semantic Analysis in Software Transformation, Eric Van Wyk & Eric Johnson, University of Minnesota Page 4

Software Transformation Systems Workshop October 24, 2004

Question(s):

Can we unify semantic analysis and efficient rewriting

mechanisms?

• Can we do more than combine incremental attribute

grammar evaluators and conditional rewrite rules?

• For example, do some transformations preserve

semantic values (such as type) so that attribute

re-computation is not necessary?

• Can rewrite rules also define semantics for the

rewritten term?

Semantic Analysis in Software Transformation, Eric Van Wyk & Eric Johnson, University of Minnesota Page 5

