Ontologies and
Software Language Engineering

Fernando Silva Parreiras
Tobias Walter
Dragan Gasevié
University of Koblenz-Landau and Athabasca University

(How) Are ontologies and
software lanuages related?

Topics

= Ontologies

o Basics, langauges and reasoning services

= Existing efforts

o Ontologies and software languages

= Ontology-enhanced software language
engineering
O Reasoning on software models

m Conclusion

Part |
Ontologies

- Basics, languages, and reasoning -

What is an ontology?

Classic definitions
(Gruber, 1993), (Guarino, 1994)

o an explicit,
formal, and
declarative specification of
a shared conceptualization

What is an ontology?

Important definition (Hendler, 2001)

o a set of knowledge terms, including
vocabulary
semantic interconnections

some simple rules of inference and
logic for some particular topic

Ontologies for
knowledge sharing

Semantic Web

Ontologies: Interconnecting applications

o Shared domain conceptualizations

pliV

attends

v

rdf:type

Musician

records

plays at

rdf:type

< musician:
rdf:ID="urn:rdf:969914d5ca929194ea18787de32c66
5a-1">

<musician:name=>Eric Clapton</musician:name>

<musician:records rdf:resource =
'http://www.guitar.org/legendaryrecordings/EC#urn:r
f:958804d5ca918084eal7676de21c887a-0"/>

</musician:Musician>

musician:records

N

<album: Album
rdf:ID="urn:rdf:958804d5ca918084eal7676de21
c887a-0">

Vi
"3

ERICCLAPTON (N o siosraohy News

\LDIO EC St Di: i "
Join The Mail List For News & Updates: w ECA::" C:“"io":l;'y[ahi = % .

Subrmit -
-~

Photo Gallery. Photos Courtesy of StarFile Latest Release - “Back Home".

Back Home, Eric Clapton's first
albumn of original material in
several years, follows this
summer's historic and heralded
Cream reunion and 2004's gold,
Top 10 Me and Mr. Johnson
covers disc (and it's audio/video
companion, Sessions for Robert
J). With Back Home, three-time
Rock and Roll Hall of Famer and
16-time Grammy winner Clapton
finds his way home with another
modern classic.

Album available now in stores > everywhere, Click #ERE to get your
copy

The first single "REVOLUTION" from the new album "BACK HOME®

available now at iTunes : Buy It N

EC Access.

<album:title>Unplugged</album:title>
<album:year>1992</album:year>

</ait').um:AIbum>

Eric Clapton - Unplugged : Tracks

Compare Prices | UserReviews | ExpertReview | Credits | Tracks | Work Listings
Tracks

To hear an audio sample, click the song title below. Windows Media
plaver is required.

1. Signe 8. Running On Faith

2. Before You Accuse Me 9. Walkin' Blues

3. Hey Hey 10. Alberta

4. Tears In Heaven 11. 8an Francisco Bay Blues
5. Lonely Stranger 12. Malted Milk

6. Nobody Knows You When 13. Old Love

You're Down & Out

7. Layla 14. Rollin' & Tumblin'

Web Ontology Language — OWL 2

Some language features

o Classes, properties, and individuals

o Equivalence and disjoints

o Specific types of restrictions over properties

Cardinal, existential and universal
O Properties
Object and data

Transitive, (inverse) functional, symmetric

Web Ontology Language

= Musician ontology

<owl:Class rdf:ID="Event"/>

<owl:Class rdf:ID="Album"/>

<owl:Class rdf:ID="Instrument"/>

<owl:Class rdf:ID="Musician"/>

<owl:Class rdf:ID="Admirer"/>

<owl:ObjectProperty rdf:ID="plays" >
<rdfs:range rdf:resource="#Musician"/>
<rdfs:domain rdf:resource="#Instrument"/>

</owl:ObjectProperty>
<l--...-->
plays ecords

\
plays at
_—

Web Ontology Language

= Musician ontology

" plw(is
@ plays at Album

attends

<owl:Class rdf:ID="Guitar"/>

<owl:Class rdf:ID="GuitarPlayer">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="plays"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:ID="Guitar"/>
</owl:allValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Musician"/>
</owl:Class>

Ontology languages
enable
reasoning!

Not ontologies per se.

Description Logics

Designed to represent and reason over
structured knowledge

A domain of interest is structured in (TBox):

o Concepts
correspond to classes (sets of individuals)

o Roles

correspond to associations (binary relations on individuals)
Knowledge is asserted through
so-called assertions (ABox)

Description Logics

Provide formal semantics for

ontology languages

Basic reasoning problems
o Satisfiability
o Consistency
O Subsumption
O Instantiation
O

http://www.cs.man.ac.uk/~horrocks/Slides/Innsbruck-tutorial/pt3-dlreasoning.pdf

Part |l

Ontologies and
Software Languages

Ontologies and software languages

Existing transformations between
o OWL and UML and MOF (Ecore)
I0DT

o OCL and OWL+SWRL
with ATL

Ontology Definition Metamodel

[1

«metamodel»
UML

%

«metamodel»

CL

«metamodel»
ER

UML Ontology

Profile

[1

[1

«metamodel»

RDFS

«metamodel»
DL

T

|

«metamodel»
OWL

«metamodel»
™

ODM

Ontologies and software languages

Existing transformations between

o OWL and UML/MOF (Ecore)

o OCL and OWL+SWRL

Various languages described with OWL
o OWL used instead of MOF (Ecore)

Should OWL and UML/MOF
be one language?

OWL and UML/MOF
will be one language

[Atkinson, 2005]

Ontologies and software languages

Existing transformations between
o OWL and UML and MOF (Ecore)
o OCL and OWL+SWRL

Various languages described with OWL
o OWL used instead of MOF (Ecore)

Embedding ontologies in OO languages
o Zhi#

Ontologies and software languages

Automated mapping between languages

o Inferring mappings among languages

Effective software knowledge management

o Explicit traceability among software artifacts

Part Il

Ontology-enhanced
software language engineering

Ecore Space

Model hierarchy

o M1: User models

O M2: Language metamodels

o M3: Ecore metamodeling language

Ecore Metametamodel

A

—————— instanceOf — — — — —
Q 1
> 0 I
% Ecore-based Metamodel
Language
Designer D ,“‘ ,
2 instanceOf— — — instanceOf — — —
Language

User - Yy

representationOf representationOf

MO ‘Real World Systems /

M1 User Model

M1 user models (e.g process models)
o designed by language user

o conforms to an M2 metamodel

o visualized by different concrete syntaxes

[order
rejected]

Ship Order
Receive Order ‘ Fill Order ‘ Close Order
[order

accepted]
& 1+ Make Payment Accept Payment O

Invoice

M2 Metamodel

m conforms to Ecore metametamodel

abstract class ActivityNode {
reference incoming [0-*] : ActivityEdge oppositeOf target;
reference outgoing [0-*] : ActivityEdge oppositeOf source;
}
class ObjectNode extends ActivityNode { }
class Action extends ActivityNode {
attribute name : String;

}

abstract class ControlNode extends ActivityNode { }
class Initial extends ControlNode { }

class Final extends ControlNode { }

class Fork extends ControlNode { }

class Join extends ControlNode { }

class Merge extends ControlNode { }

class Decision extends ControlNode { }

abstract class ActivityEdge {
reference source [1-1] : ActivityNode;
reference target [1-1] : ActivityNode;
}
class ObjectFlow extends ActivityEdge { }
class ControlFlow extends ActivityEdge { }

M3 Metametamodel

m Ecore M3 metametamodel

(excerpt) 7

+ eSubpackage

EPackage

ETypedElement

*

+ eSuperPackageYy ¢

+ ePackage * (P + eType JAN

| Q EDataType |

+ eSuperTypesm h
EClass + eStructur-alFeaturel EStructuralFeature

*
0.1 *
1
+ eContainingClass
EReference | eOpposite EAttribute

0.1

Bridging Ecore and OWL

Integration of Ecore technical space with
ontology language OWL2

o Create Ecore-based metamodels with integrated

OWL2 axioms
OWL2 expressions
Language Bridge /
owlL Bridge Definition Ecore Metametamodel
Metamodel M3
» A
- = instanceOf f— — — — — instanceOf- — — — —
\ |
OWL (idg /? Ecore-based Metamodel \
Ontology Bridge Use M2
—————————————————— instanceOf—| — —I instanceOf - — —
Il ‘\
< Model Model M1

representationOf= T representationOf
\
Real World Systems / MO

Bridge Definition

Step 1: Mapping

Ecore / EMOF OWL

package ontology

class class

suptertype relation subclass relation

reference, attribute object property, data property
data types data types

enumeration enumeration

multiplicity cardinality

opposite reference inverse object properties

Step 2: Based on Mapping:

Integrate/Merge concepts of Ecore and OWL (meta-)
metamodels

Result: Integrated metametamodel

Metamodel + OWL Annotations

= conforms to integrated metametamodel

abstract class ActivityNode quivalentwith edge some Final {
reference incoming [0-*] : ActivityEdge oppositeOf target;
reference outgoing [0-*] : ActivityEdge oppositeOf source;

transitive reference edge [0-*] : ActivityNode;isChain(outgoing, target);

}

abstract class ActivityEdge {
reference source [1-1] : ActivityNode;
reference target [1-1] : ActivityNode;

}

class Initial extends ControlNode ,
subClassof outgoing some (to some (Action or ControlNode))

Bridge - Services

Metamodel and model are transformed to
DL knowlegde base (schema-aware
transformation)

O reasoning services

Language Bridge /
OwL Bridge Definition Ecore Metametamodel
Metamodel M3
» A
- instanceOf f— — = — = instanceOf- — — — —
2 |
TBox transform Ol Bridge Use/ Ecore-based Metamodel \
‘ \ Ontology M2
ReGSO'.’”ng Know/egLeBase —————————————————— instanceOf- — —l instanceOf— — —
Service g // - Sl
ABox / transform | Model Model M1
| S —

representationOf= T representationOf
\
Real World Systems / MO

Satisfiability Checking of Metamodels

Accomplished Service

o Finds unsatisfiable concepts in a metamodel

Name Satisfiability checking

Signature Set<Concept> GetUnsatisfiable (Ontology O)

Description | Find all unsatisfiable concepts in given ontology O. A concept in an
ontology is unsatisfiable if it is an empty set. Return NULL if there
is not any unsatisfiable concept.

Pattern b = GetUnsatisfiable (O)
Input An Ontology O
Output b = NULL iff there is no unsatisfiable concept

b = a set of unsatisfiable concepts otherwise

Satisfiability Checking (Example)

M2 Metamodel

class ActivityNode equivalentwith restrictionon edge with some Final{
reference incoming [0-*] : ActivityEdge oppositeof target;
reference outgoing [0-*] : ActivityEdge oppositeof source;

transitive reference edge [0-*] : ActivityNode isChain(outgoing, target);

}

class Final extends ControlNode
subClassOf (restrictidogQon edge with some ActivityNode) and
not(restrictt™non edge with some ActivityNode)

Unsatisfiable Class:
two contradictory
restrictions

Consistency Checking of User Models

Accomplished Service

O Ensures that a model does not contain any
contradictory facts with regard to its
language metamodel

Name Consistency Checking
Signature boolean consistency (Ontology O)
Description Checks if the given ontology O is consistent, i.e. if there exists a model

(a model-theoretic instance) for O. If ontology O is consistent, then
return true. Otherwise return false.

Pattern b = consistency (O)
Input An Ontology O
Output b = true iff o is consistent,

b = false otherwise

Consistency Checking (Example)

M2 Metamodel

reference incoming [0-%*]
reference outgoing [0-%*]

}

class ActivityNode equivalentwith restrictionOn edge with some Final{
: ActivityEdge oppositeOf target;
: ActivityEdge oppositeOf source;

transitive reference edge [0-*] : ActivityNode isChain(outgoing, target);

M1 Model

Inconsistency:
Missing flow to Final
action

Receive Order @

Classification of Elements in User Models

Accomplished Service

o Determines the most specific type an model element
has

O with respect to all attributes and properties in the
context of the model element

Name Classification

Signature boolean classifiesAs (Ontology O, concept A, individual i)

Description | Checks if the given individual i is an instance of concept A in the
ontology ref, then return true. Otherwise return false.

Pattern b = classifiesAs (O, A, i)
Input An Ontology O, Concept A and Individual i
Output b = true iff i is an instance of A,

b = false otherwise

Classification (Example)

M2 Metamodel

class ObjectNode extends ActivityNode
equivalentwith ((restrictionon incoming with some ObjectFlow)
and (restrictionOn outgoing with some ObjectFlow))

M1 Model

AN

Classify Invoice Node
Result: It is of type
ObjectNode

Explanations in User Models

Accomplished Service

o Explanations for subsumptions and unsatisfiable
classes in metamodels

o Explanations for inconsistencies in models

Benefits for language users
o Debugging of models

Name Explanation

Signature Set<Axiom> getExplanation (Ontology O, axiom Ax)

Description | Retrieve the set of axiom that entail axiom Ax in the given ontology,
then return them.

Pattern b = getExplanation (O,Ax)

Input An Ontology O and axiom Ax

Output b = set of axiom that entail the given axiom Ax.

b = NULL otherwise

Explanation (Example Inconsistency)

M2 Metamodel | Explanation from TwoUse Toolkit

class Acti
referend CHECK CONSISTENCY
referend

consistent: No
transiti

rget) ;
¥ Explanation:

receiveOrder type Action

Action subClassOf ActivityNode
ActivityNode equivalentTo edge some Final

M1 Model

Receive Order @

Model Bridge

Transforming only user models to DL
knowlegde base

O Services for reasoning on the semantics of
the language

Ecore Metametamodel \
M3 :
A Model Bridge
- = - = = insta[\ceOf ————————————
| \
A |
Process Metamodel - — OwWL
M2 < (Bridge Deflnltlon| >Metamode|
— — —_— -instanceOf-'| —linstanceOf— —_— _—— — ‘ —
— ~ msta_nceO
N
M1 Process Process OWL
Model Model N7 Ontology bransfonm DL Reasoning

Service

——————————————————— Knowledge

representationOf representationOf

MO ‘Real World Systems /

Process Refinement

Formalization of semantics of graph-based modeling languages
Interpretation and validation of refinement constraints

Ensuring the specific process preserving the intended meaning of
the abstract process

Abstract Process:
Select
Applicant

Applicant

Specific Process: l Send N
Rejection

Interview

Applicant

el - - O -, . e N .

i Request 'I_]!' Send |
| Contract] | Contract }

= = = o O

Send]{Prepare) Invalldl
e

Acceptanc Contract

Part |V
Demo
The TwoUse Toolkit

Language Design

@
. e
Semantic Toolkit Transformation
Web
.

Reasoning and
Querying

#OA)

(from edge)

]
H sequenceEdgs EEIsubPerert}rChainET

D“* “'H' |
outgoing incoming ™ Q_E_Iltransitive
spLUrce target

L 1 d (from edge)
N H Activity ____—_—__1
| U*________ﬂﬂm___.lﬂ
| [[from bpmn.text.ecore)
: edgf |
| | : .1
: H Task H Final = equivalentTol#h
: (from Activity) |
L o e

I—'anguage Textual and Graphical Notations for Integrating

o \ OWL Ontologies with Ecore and UML.

~

TwoUse
Toolkit

Transformation

Semantic
Web

Reasoning and

Querying /\//

e ——__1

M3 Ecore
Metametamodel

A

conformsTo

| : owL
Metametamodel

conformsTo conformsTo

Language
Designer

M2 Metamodel

Metamodel to TBox

A—L a > Ontology

C

i

onformsTo

Lizer

ow

.

Language User

M1 Model

Model to ABox

]

Model Transformations from UML, BPMN and

Language Ontologies.

Design

UNIFIED
MOD[LIIIG \ ‘
ANGUAGE \

TwoUse
Toolkit

Reasoning and _
Querying ’\#%—TJ

L/
]
Semantic
Web

any Ecore-Based Software Language into OWL

Language
Design

umm‘.:>’
™

MODELING
ANGUAGE

TwoUse
Toolkit

&
Ny
Semantic
Web

Transformation

Applicant

Select
“"‘3“

Refinement

Send
Rejection |nva|| |

Interview
Applicant

Request \ Send \
\Contract Contract

(posond H Zrzpre)
Services for Validating, Querying, Integrating and
Debugging Software Languages.

~

REasenngrand
Querying

:i .ANAGEMENT

Conclusion

Ontology languages are well-defined
o Allowing for reasoning

Reasoning and ontologies are not magic
OWL does not meaning using ontologies
Some early and promising steps

Many challenges still open

Ontologies and software

Ianguages)w’ﬂlive

happily together!

Thank you!

Questions?

