
Ontologies and
Software Language Engineering

Fernando Silva Parreiras
Tobias Walter

 Dragan Gašević
University of Koblenz-Landau and Athabasca University

(How) Are ontologies and
software lanuages related?

Topics

 Ontologies

 Basics, langauges and reasoning services

 Existing efforts

 Ontologies and software languages

 Ontology-enhanced software language
engineering

 Reasoning on software models

 Conclusion

Part I

Ontologies

- Basics, languages, and reasoning -

What is an ontology?

 Classic definitions
(Gruber, 1993), (Guarino, 1994)

 an explicit,
formal, and
declarative specification of
a shared conceptualization

What is an ontology?

 Important definition (Hendler, 2001)

 a set of knowledge terms, including

 vocabulary

 semantic interconnections

 some simple rules of inference and
logic for some particular topic

Ontologies for
knowledge sharing

Semantic Web

 Ontologies: Interconnecting applications

 Shared domain conceptualizations

< musician: Musician
rdf:ID="urn:rdf:969914d5ca929194ea18787de32c66
5a-1">
 …
 <musician:name>Eric Clapton</musician:name>
 <musician:records rdf:resource =
"http://www.guitar.org/legendaryrecordings/EC#urn:r
df:958804d5ca918084ea17676de21c887a-0"/>
 …
</musician:Musician>

Musician

Album

Event

plays

plays at

attends

records

Admirer

Instrument

musician:records

rdf:type
rdf:type

<album: Album
rdf:ID="urn:rdf:958804d5ca918084ea17676de21
c887a-0">
 …
 <album:title>Unplugged</album:title>
 <album:year>1992</album:year>
 …
</album:Album>

Web Ontology Language – OWL 2

 Some language features

 Classes, properties, and individuals

 Equivalence and disjoints

 Specific types of restrictions over properties

 Cardinal, existential and universal

 Properties

 Object and data

 Transitive, (inverse) functional, symmetric

Musician

Album

Event

plays

plays at

attends

records

Admirer

Instrument

Web Ontology Language

 Musician ontology

 <owl:Class rdf:ID="Event"/>

<owl:Class rdf:ID="Album"/>

<owl:Class rdf:ID="Instrument"/>

<owl:Class rdf:ID="Musician"/>

<owl:Class rdf:ID="Admirer"/>

<owl:ObjectProperty rdf:ID="plays">

 <rdfs:range rdf:resource="#Musician"/>

 <rdfs:domain rdf:resource="#Instrument"/>

</owl:ObjectProperty>

<!--…-->

Musician

Album

Event

plays

plays at

attends

records

Admirer

Instrument

Web Ontology Language

 Musician ontology

<owl:Class rdf:ID="Guitar“/>

<owl:Class rdf:ID="GuitarPlayer">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID=“plays"/>

 </owl:onProperty>

 <owl:allValuesFrom>

 <owl:Class rdf:ID="Guitar"/>

 </owl:allValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Musician"/>

</owl:Class>

Guitar

GuitarPlayer

Ontology languages
enable

reasoning!
Not ontologies per se.

Description Logics

 Designed to represent and reason over
structured knowledge

 A domain of interest is structured in (TBox):

 Concepts
 correspond to classes (sets of individuals)

 Roles
 correspond to associations (binary relations on individuals)

 Knowledge is asserted through
so-called assertions (ABox)

Knowledge Base

TBox

ABox

In
feren

ce En
gin

e

A
p

p
licatio

n

Description Logics

 Provide formal semantics for
ontology languages

 Basic reasoning problems
 Satisfiability

 Consistency

 Subsumption

 Instantiation

 …

Knowledge Base

TBox

ABox

In
feren

ce En
gin

e

A
p

p
licatio

n

http://www.cs.man.ac.uk/~horrocks/Slides/Innsbruck-tutorial/pt3-dlreasoning.pdf

Part II

Ontologies and
Software Languages

Ontologies and software languages

 Existing transformations between

 OWL and UML and MOF (Ecore)

 IODT

 OCL and OWL+SWRL

 with ATL

Ontology Definition Metamodel

Ontologies and software languages

 Existing transformations between

 OWL and UML/MOF (Ecore)

 OCL and OWL+SWRL

 Various languages described with OWL

 OWL used instead of MOF (Ecore)

Should OWL and UML/MOF
be one language?

[Atkinson, 2005]

OWL and UML/MOF
will be one language

Ontologies and software languages

 Existing transformations between

 OWL and UML and MOF (Ecore)

 OCL and OWL+SWRL

 Various languages described with OWL

 OWL used instead of MOF (Ecore)

 Embedding ontologies in OO languages

 Zhi#

Ontologies and software languages

 Automated mapping between languages

 Inferring mappings among languages

 Effective software knowledge management

 Explicit traceability among software artifacts

Part III

Ontology-enhanced
software language engineering

Ecore Space

 Model hierarchy

 M1: User models

 M2: Language metamodels

 M3: Ecore metamodeling language

Ecore Metametamodel

M3

M2

M1

Ecore-based Metamodel

Model Model

instanceOf

instanceOf instanceOf

M0 Real World Systems

representationOf representationOf

Language

User

Language

Designer

M1 User Model

 M1 user models (e.g process models)

 designed by language user

 conforms to an M2 metamodel

 visualized by different concrete syntaxes

[order

accepted]

Receive Order Close Order

Accept Payment

Ship Order
Fill Order

Send Invoice Make Payment

Invoice

[order

rejected]

M2 Metamodel

 conforms to Ecore metametamodel
 abstract class ActivityNode {
 reference incoming [0-*] : ActivityEdge oppositeOf target;
 reference outgoing [0-*] : ActivityEdge oppositeOf source;
 }
 class ObjectNode extends ActivityNode { }
 class Action extends ActivityNode {
 attribute name : String;
 }

 abstract class ControlNode extends ActivityNode { }
 class Initial extends ControlNode { }
 class Final extends ControlNode { }
 class Fork extends ControlNode { }
 class Join extends ControlNode { }
 class Merge extends ControlNode { }
 class Decision extends ControlNode { }

 abstract class ActivityEdge {
 reference source [1-1] : ActivityNode;
 reference target [1-1] : ActivityNode;
 }
 class ObjectFlow extends ActivityEdge { }
 class ControlFlow extends ActivityEdge { }

M3 Metametamodel
 Ecore M3 metametamodel

 (excerpt)

Bridging Ecore and OWL

 Integration of Ecore technical space with
ontology language OWL2
 Create Ecore-based metamodels with integrated

 OWL2 axioms

 OWL2 expressions

Ecore Metametamodel

M3

M2

M1

Ecore-based Metamodel

Model Model

instanceOf

instanceOf instanceOf

M0Real World Systems

representationOf representationOf

OWL
Metamodel

OWL
Ontology

Bridge Definition

Bridge Use

Language Bridge

instanceOf

Bridge Definition

Step 1: Mapping

Step 2: Based on Mapping:

 Integrate/Merge concepts of Ecore and OWL (meta-)
 metamodels

 Result: Integrated metametamodel

Ecore / EMOF OWL

package ontology

class class

suptertype relation subclass relation

reference, attribute object property, data property

data types data types

enumeration enumeration

multiplicity cardinality

opposite reference inverse object properties

Metamodel + OWL Annotations

 conforms to integrated metametamodel
abstract class ActivityNode
 reference incoming [0-*] : ActivityEdge oppositeOf target;
 reference outgoing [0-*] : ActivityEdge oppositeOf source;

 reference edge [0-*] : ActivityNode
}

abstract class ActivityEdge {
 reference source [1-1] : ActivityNode;
 reference target [1-1] : ActivityNode;
 }

class Initial extends ControlNode

{

}

...

equivalentWith edge some Final { {

isChain(outgoing, target); ;

 ,
subClassOf outgoing some (to some (Action or ControlNode))

transitive

Bridge - Services

 Metamodel and model are transformed to
DL knowlegde base (schema-aware
transformation)
 reasoning services

Ecore Metametamodel

M3

M2

M1

Ecore-based Metamodel

Model Model

instanceOf

instanceOf instanceOf

M0Real World Systems

representationOf representationOf

OWL
Metamodel

OWL
Ontology

Bridge Definition

Bridge Use

Language Bridge

instanceOf

DL
Knowledge Base

ABox

TBox

Reasoning
Service

transform

transform

Satisfiability Checking of Metamodels

 Accomplished Service

 Finds unsatisfiable concepts in a metamodel

Name Satisfiability checking

Signature Set<Concept> GetUnsatisfiable (Ontology O)

Description Find all unsatisfiable concepts in given ontology O. A concept in an
ontology is unsatisfiable if it is an empty set. Return NULL if there
is not any unsatisfiable concept.

Pattern b = GetUnsatisfiable (O)

Input An Ontology O

Output b = NULL iff there is no unsatisfiable concept
b = a set of unsatisfiable concepts otherwise

Satisfiability Checking (Example)

class ActivityNode equivalentWith restrictionOn edge with some Final{
 reference incoming [0-*] : ActivityEdge oppositeOf target;
 reference outgoing [0-*] : ActivityEdge oppositeOf source;

 transitive reference edge [0-*] : ActivityNode isChain(outgoing, target);
}

class Final extends ControlNode
 subClassOf (restrictionOn edge with some ActivityNode) and
 not(restrictionOn edge with some ActivityNode)
{ }

M2 Metamodel

Unsatisfiable Class:
two contradictory

restrictions

Consistency Checking of User Models

 Accomplished Service

 Ensures that a model does not contain any
contradictory facts with regard to its
language metamodel

 Name Consistency Checking

Signature boolean consistency (Ontology O)

Description Checks if the given ontology O is consistent, i.e. if there exists a model
(a model-theoretic instance) for O. If ontology O is consistent, then
return true. Otherwise return false.

Pattern b = consistency (O)

Input An Ontology O

Output b = true iff o is consistent,
b = false otherwise

Consistency Checking (Example)

class ActivityNode equivalentWith restrictionOn edge with some Final{
 reference incoming [0-*] : ActivityEdge oppositeOf target;
 reference outgoing [0-*] : ActivityEdge oppositeOf source;

 transitive reference edge [0-*] : ActivityNode isChain(outgoing, target);
}

Receive Order

M2 Metamodel

M1 Model
Inconsistency:

Missing flow to Final
action

Classification of Elements in User Models

 Accomplished Service

 Determines the most specific type an model element
has

 with respect to all attributes and properties in the
context of the model element

Name Classification

Signature boolean classifiesAs (Ontology O, concept A, individual i)

Description Checks if the given individual i is an instance of concept A in the
ontology ref, then return true. Otherwise return false.

Pattern b = classifiesAs (O, A, i)

Input An Ontology O, Concept A and Individual i

Output b = true iff i is an instance of A,
b = false otherwise

Classification (Example)

class ObjectNode extends ActivityNode
 equivalentWith ((restrictionOn incoming with some ObjectFlow)
 and (restrictionOn outgoing with some ObjectFlow))

{ }

M2 Metamodel

M1 Model

Send Invoice Make PaymentInvoice

Classify Invoice Node
Result: It is of type

ObjectNode

Explanations in User Models

 Accomplished Service
 Explanations for subsumptions and unsatisfiable

classes in metamodels

 Explanations for inconsistencies in models

 Benefits for language users
 Debugging of models

Name Explanation

Signature Set<Axiom> getExplanation (Ontology O, axiom Ax)

Description Retrieve the set of axiom that entail axiom Ax in the given ontology,
then return them.

Pattern b = getExplanation (O,Ax)

Input An Ontology O and axiom Ax

Output b = set of axiom that entail the given axiom Ax.
b = NULL otherwise

Explanation (Example Inconsistency)

class ActivityNode equivalentWith restrictionOn edge with some Final{
 reference incoming [0-*] : ActivityEdge oppositeOf target;
 reference outgoing [0-*] : ActivityEdge oppositeOf source;

 transitive reference edge [0-*] : ActivityNode isChain(outgoing, target);
}

Receive Order

M2 Metamodel

M1 Model

Explanation from TwoUse Toolkit

CHECK CONSISTENCY

Consistent: No

Explanation:
 receiveOrder type Action
 Action subClassOf ActivityNode
 ActivityNode equivalentTo edge some Final

Ecore Metametamodel

M3

M2

M1

Process Metamodel

Process
Model

Process
Model

instanceOf

instanceOf instanceOf

M0 Real World Systems

representationOf representationOf

Model Bridge

OWL
Metamodel

OWL
Ontology

instanceOf

Bridge Definition

Bridge Use

DL
Knowledge

Base

TBox
Reasoning

Service

transform

Model Bridge

 Transforming only user models to DL
knowlegde base

 Services for reasoning on the semantics of
the language

Process Refinement
 Formalization of semantics of graph-based modeling languages

 Interpretation and validation of refinement constraints

 Ensuring the specific process preserving the intended meaning of
the abstract process

Invalid!

Refinement

Abstract Process:

Specific Process:

Part IV

Demo

The TwoUse Toolkit

TwoUse

Toolkit

X

MODEL

MANAGEMENT

X

Language Design

Transformation

Reasoning and

Querying

TwoUse

Toolkit

X

MODEL

MANAGEMENT

X

Language

Design

Transformation

Reasoning and

Querying

Textual and Graphical Notations for Integrating

OWL Ontologies with Ecore and UML.

TwoUse

Toolkit

X

MODEL

MANAGEMENT

X

Language

Design

Transformation

Reasoning and

Querying

Language User

Language

Designer

M1 Model

M2 Metamodel Metamodel to TBox

Ontology

M3 Ecore
Metametamodel

conformsTo

conformsTo

OWL
Metametamodel

conformsTo

Transformation

conformsTo

Model to ABox

O
W

L
iz

e
r

Model Transformations from UML, BPMN and

any Ecore-Based Software Language into OWL

Ontologies.

TwoUse

Toolkit

X

MODEL

MANAGEMENT

X

Language

Design

Transformation

Reasoning and

Querying

Refinement

Invalid!

Services for Validating, Querying, Integrating and

Debugging Software Languages.

Conclusion

 Ontology languages are well-defined

 Allowing for reasoning

 Reasoning and ontologies are not magic

 OWL does not meaning using ontologies

 Some early and promising steps

 Many challenges still open

Ontologies and software
languages will live

happily together!

Thank you!

Questions?

